
Sensitivity Oracle for All-Pairs
Mincuts

Abhyuday Pandey

BT/CSE/170039

Supervisor: Dr. Surender Baswana

May 10, 2021

Abstract

Let 𝐺 = (𝑉,𝐸) be an undirected unweighted graph on 𝑛 vertices and 𝑚
edges. We address the problem of sensitivity oracle for all-pairs mincuts in
𝐺 defined as follows.

Build a compact data structure that, on receiving a pair of vertices 𝑠, 𝑡 ∈
𝑉 and insertion/deletion of any edge as query, can efficiently report the value
of the mincut between 𝑠 and 𝑡 upon the update.

To the best of our knowledge, there exists no data structure for this
problem which takes 𝑜(𝑚𝑛) space and a non-trivial query time. Recently,
Baswana, Gupta, and Knollman [1] gave a data structure that can handle
single edge insertion in 𝒪(𝑛2) space and 𝒪(1) query time. We present the
following results.

1. We present a sensitivity oracle for all-pairs mincuts. Our data structure
guarantees 𝒪(1) query time. The space occupied by this data structure
is 𝒪(𝑛2) which matches the worst-case size of a graph on 𝑛 vertices.
A resulting (𝑠, 𝑡)-mincut after edge insertion/deletion can be reported
in 𝒪(𝑛) time which is optimal. Our data structure also subsumes the
results of Baswana, Gupta, and Knollman [1].

2. We give conditional lower bounds on data structures that can handle
dual-deletions (or dual-faults) for a (𝑠, 𝑡)-mincut. We also give a condi-
tional lower bound on a data structure storing all static ({𝑠, 𝑢}, {𝑡, 𝑣})-
mincut values with fixed 𝑠, 𝑡 ∈ 𝑉 . This implies a conditional lower
bound for a generalized flow tree for 2 × 2 mincuts, i.e. a data struc-
ture that can report the value of static ({𝑠, 𝑢}, {𝑡, 𝑣})-mincut for given
vertices 𝑠, 𝑡, 𝑢, 𝑣 ∈ 𝑉 .

Some parts of this work have been taken from a recent research of Baswana
and Pandey [2], but presented here for sake of continuity.

Acknowledgments

I am deeply indebted to Prof Surender Baswana for allowing me to work
with him. I am thankful to him for having regular meetings despite his
busy schedule and helping me acquire the necessary perseverance for solving
a research problem. I would like to thank Prof Yefim Dinitz and Prof Alek
Vainshtein for their seminal work “The connectivity carcass of a vertex subset
in a graph and its incremental maintenance" which appeared in STOC 1994
and subsequently in SIAM Journal of Computing 2000 edition. The paper
truly captures the entire anatomy of mincuts and also forms the foundation
of our results. Last but not the least, I would like to thank my parents and
sister for their incredible and unconditional support in this pandemic.

2

Contents

1 Introduction 4
1.1 Previous Results . 4
1.2 Our Contribution . 5
1.3 Related Work . 6

2 Preliminaries 7
2.1 Compact representation for all (𝑠, 𝑡)-mincuts 8
2.2 Compact representation for all global mincuts 10

2.2.1 Construction of (𝑠, 𝑡)-strip from cactus 10
2.2.2 Tree representation for cactus 11

2.3 Compact representation for all Steiner mincuts 12
2.4 Compact representation of all-pairs mincuts values 14

3 𝒪(𝑛2) space sensitivity oracle for all-pairs mincuts 16
3.1 Edge-containment query for fixed 𝑠, 𝑡 ∈ 𝑉 16
3.2 Edge-containment query for Steiner set 𝑆 17
3.3 Edge-containment query for all-pairs Mincuts 20
3.4 Edge-insertion query on Data Structure 21

4 Conditional Lower Bounds on Mincut Data Structures 22
4.1 Strip representation of reachability in directed graphs 22
4.2 Conditional Lower Bound for Generalized Flow Tree for 2× 2

mincuts . 23
4.3 Conditional Lower Bound for dual-fault-tolerant (𝑠, 𝑡)-mincut . 24

3

Chapter 1

Introduction

Graph mincut is a fundamental structure in graph theory with numerous
applications. Let 𝐺 = (𝑉,𝐸) be an undirected unweighted connected graph
on 𝑛 = |𝑉 | vertices and 𝑚 = |𝐸| edges. Two most common types of mincuts
are global mincuts and pairwise mincuts. A set of edges with the least
cardinality whose removal disconnects the graph is called a global mincut.
For any pair of vertices 𝑠, 𝑡 ∈ 𝑉 , a set of edges with the least cardinality
whose removal disconnects 𝑡 from 𝑠 is called a pairwise mincut for 𝑠, 𝑡 or
simply a (𝑠, 𝑡)-mincut. A more general notion is that of Steiner mincuts. For
any given set 𝑆 ⊆ 𝑉 of vertices, a set of edges with the least cardinality
whose removal disconnects 𝑆 is called a Steiner mincut for 𝑆. It is easy to
observe that the Steiner mincuts for 𝑆 = 𝑉 are the global mincuts and for
𝑆 = {𝑠, 𝑡} are (𝑠, 𝑡)-mincuts.

While designing an algorithm for a graph problem, one usually assumes
that the underlying graph is static. But, this assumption is unrealistic for
most of the real-world graphs where vertices and/or edges do undergo change,
though occasionally. Sensitivity Oracles can be used to efficiently make a
query for a single update/delete operation. The data structure can be pre-
processed offline.

1.1 Previous Results

There exists a classical 𝒪(𝑛) size data structure that stores all-pairs mincuts
[11] known as Gomory-Hu tree. It is a tree on the vertex set 𝑉 that compactly
stores a mincut between each pair of vertices. However, we cannot determine

4

using a Gomory-Hu tree whether the failure of an edge will affect the (𝑠, 𝑡)-
mincut unless this edge belongs to the (𝑠, 𝑡)-mincut present in the tree. We
can get a fault-tolerant data structure by storing 𝑚 Gomory-Hu trees, one
for each edge failure. The overall data structure occupies 𝒪(𝑚𝑛) space and
takes 𝒪(1) time to report the value of (𝑠, 𝑡)-mincut for any 𝑠, 𝑡 ∈ 𝑉 upon
failure of a given edge. A new (𝑠, 𝑡)-mincut can itself be reported in 𝒪(𝑛)
time.

For handling edge insertions, Baswana, Gupta and Knollman [1] recently
gave a data structure that can report the value of a (𝑠, 𝑡)-mincut upon inser-
tion of an edge. Moreover, a (𝑠, 𝑡)-mincut incorporating the change can be
reported in 𝒪(𝑛) time.

Combining the above two results, a sensitivity oracle can be obtained
that uses 𝒪(𝑚𝑛) space. However, the 𝒪(𝑚𝑛) space occupied by this data
structure is far from the size of the graph. To the best of our knowledge,
there exists no data structure for this problem which takes 𝑜(𝑚𝑛) space and
a non-trivial query time.

1.2 Our Contribution

We present a space efficient sensitivity oracle for the all-pairs mincuts prob-
lem in an undirected unweighted multigraph. The data structure occupies
𝒪(𝑛2) space while achieving the optimal 𝒪(1) query time to report the value
of (𝑠, 𝑡)-mincut for any 𝑠, 𝑡 ∈ 𝑉 upon deletion/insertion of any given edge.
A resulting (𝑠, 𝑡)-mincut incorporating the change can be reported in 𝒪(𝑛)
time.

In order to design our data structure, we present an efficient solution for
a related problem of independent interest, called edge-containment query on
a mincut defined as follows.

edge-contained(𝑠, 𝑡, (𝑥, 𝑦)): Check if a given edge (𝑥, 𝑦) ∈ 𝐸 belong to
some (𝑠, 𝑡)-mincut.

Using a data structure for this problem, we can answer a deletion query
upon failure of edge (𝑥, 𝑦) by performing the corresponding edge-containment
query. The value of (𝑠, 𝑡)-mincut will reduce by unity if the edge-containment
query evaluates to true. We can keep a Gomory-Hu tree of 𝒪(𝑛) size as an
auxiliary data structure to lookup the old value of 𝑐𝑠,𝑡. The following fact

5

allows us to do so.

Fact 1.1. The value of (𝑠, 𝑡)-mincut decreases on deletion of an edge (𝑥, 𝑦)
if and only if (𝑥, 𝑦) lies in some (𝑠, 𝑡)-mincut.

We give conditional lower bounds for the following problems.

1. Data structures that can handle dual-deletions (or dual-faults) for a
(𝑠, 𝑡)-mincut. In particular, we show that a data structure that can
handle deletion (or failure) of two edges for a (𝑠, 𝑡)-mincut even for
fixed pair of vertices 𝑠, 𝑡 ∈ 𝑉 requires Ω̃(𝑛2) space for non-trivial query
time.

2. Generalized flow tree for 2 × 2 mincuts, i.e. a data structure that
can report the value of static ({𝑠, 𝑢}, {𝑣, 𝑡})-mincut for given vertices
𝑠, 𝑡, 𝑢, 𝑣 ∈ 𝑉 . We show that even if we fix 𝑠, 𝑡 ∈ 𝑉 , the data structure
must require Ω̃(𝑛2) space for non-trivial query time.

1.3 Related Work

A related problem is that of maintaining mincuts in a dynamic environment.
Until recently, most of the work on this problem has been limited to global
mincuts. Thorup [17] gave a Monte-Carlo algorithm for maintaining a global
mincut of polylogarithmic size with �̃�(

√
𝑛) update time. He also showed how

to maintain a global mincut of arbitrary size with 1 + 𝑜(1)-approximation
within the same time-bound. Goranci, Henzinger and Thorup [12] gave a
deterministic incremental algorithm for maintaining a global mincut with
amortized �̃�(1) update time and 𝒪(1) query time. Hartmann and Wagner
[13] designed a fully dynamic algorithm for maintaining all-pairs mincuts
which provided significant speedup in many real-world graphs, however, its
worst-case asymptotic time complexity is not better than the best static
algorithm for an all-pairs mincut tree. Recently, there is a fully-dynamic
algorithm [4] that approximates all-pairs mincuts up to a nearly logarithmic
factor in �̃�(𝑛2/3) amortized time against an oblivious adversary, and �̃�(𝑚3/4)
time against an adaptive adversary. To the best of our knowledge, there exists
no non-trivial dynamic algorithm for all-pairs exact mincut. We feel that our
insights in this paper may be helpful in this problem.

6

Chapter 2

Preliminaries

Let 𝐺 = (𝑉,𝐸) be an undirected unweighted multigraph without self-loops.
To contract (or compress) a set of vertices 𝑈 ⊆ 𝑉 means to replace all vertices
in 𝑈 by a single vertex 𝑢, delete all edges with both endpoints in 𝑢 and for
every edge which has one endpoint in 𝑈 , replace this endpoint by 𝑢. A graph
obtained by performing a sequence of vertex contractions is called a quotient
graph of 𝐺.

For any given 𝐴,𝐵 ⊂ 𝑉 such that 𝐴 ∩ 𝐵 = ∅, we use 𝑐(𝐴,𝐵) to denote
the number of edges with one endpoint in 𝐴 and another in 𝐵. Overloading
the notation, we shall use 𝑐(𝐴) for 𝑐(𝐴,𝐴).

Definition 2.1 ((𝑠, 𝑡)-cut). A subset of edges whose removal disconnects 𝑡
from 𝑠 is called an (𝑠, 𝑡)-cut. An (𝑠, 𝑡)-mincut is an (𝑠, 𝑡)-cut of minimum
cardinality.

Definition 2.2 (set of vertices defining a cut). A subset 𝐴 ⊂ 𝑉 is said to
define an (𝑠, 𝑡)-cut if 𝑠 ∈ 𝐴 and 𝑡 /∈ 𝐴. The corresponding cut is denoted by
cut(𝐴,𝐴) or more compactly cut(𝐴).

Definition 2.3 (Nearest mincut from 𝑠 to 𝑡). An (𝑠, 𝑡)-mincut (𝐴,𝐴) where
𝑠 ∈ 𝐴 is called the nearest mincut from 𝑠 to 𝑡 if and only if for any (𝑠, 𝑡)-
mincut (𝐴′, 𝐴′) where 𝑠 ∈ 𝐴′, 𝐴 ⊆ 𝐴′. The set of vertices 𝐴 is denoted by
𝑠𝑁𝑡 .

The following lemma gives necessary and sufficient condition for an edge
(𝑥, 𝑦) to increases the value of (𝑠, 𝑡)-mincut.

Lemma 2.4 ([16]). The insertion of an edge (𝑥, 𝑦) can increase the value of
(𝑠, 𝑡)-mincut by unity if and only if 𝑥 ∈ 𝑠𝑁𝑡 and 𝑦 ∈ 𝑡𝑁𝑠 or vice versa.

7

The following lemma exploits the undirectedness of the graph.

Lemma 2.5. Let 𝑥, 𝑦, 𝑧 be any three vertices in 𝐺. If 𝑐𝑥,𝑦 > 𝑐 and 𝑐𝑦,𝑧 > 𝑐,
then 𝑐𝑥,𝑧 > 𝑐 as well.

When there is no scope of confusion, we do not distinguish between a
mincut and the set of vertices defining the mincut. We now state a well-
known property of cuts.

Lemma 2.6 (Submodularity of cuts). For any two subsets 𝐴,𝐵 ⊂ 𝑉 , 𝑐(𝐴)+
𝑐(𝐵) ≥ 𝑐(𝐴 ∪𝐵) + 𝑐(𝐴 ∩𝐵).

Lemma 2.7. Let 𝑆 ⊂ 𝑉 define an (𝑠, 𝑡)-mincut with 𝑠 ∈ 𝑆. For any subset
𝑆 ′ ⊂ 𝑉 ∖ 𝑆 with 𝑣 /∈ 𝑆 ′,

𝑐(𝑆, 𝑆 ′) ≤ 𝑐(𝑆, 𝑉 ∖ (𝑆 ∪ 𝑆 ′))

2.1 Compact representation for all (𝑠, 𝑡)-mincuts

Dinitz and Vainshtein [8] showed that there exists a quotient graph of 𝐺
that compactly stores all (𝑠, 𝑡)-mincuts. This graph is called strip 𝒟𝑠,𝑡. The
2 node to which 𝑠 and 𝑡 are mapped in 𝒟𝑠,𝑡 are called the terminal nodes,
denoted by s and t respectively. Every other node is called a non-terminal
node. We now elaborate some interesting properties of the strip 𝒟𝑠,𝑡.

Consider any non-terminal node 𝑣, and let 𝐸𝑣 be the set of edges incident
on it in 𝒟𝑠,𝑡. There exists a unique partition, called inherent partition, of
𝐸𝑣 into 2 subsets of equal sizes. These subsets are called the 2 sides of the
inherent partition of 𝐸𝑣. Interestingly, if we traverse 𝒟𝑠,𝑡 such that upon
visiting any non-terminal node using an edge from one side of its inherent
partition, the edge that we traverse while leaving it belong to the other side
of the inherent partition, then no node will be visited again. Such a path is
called a coherent path in 𝒟𝑠,𝑡. Furthermore, if we begin traversal from a non-
terminal node 𝑢 along one side of its inherent partition and keep following a
coherent path we are bound to reach the terminal s or terminal t. So the two
sides of the inherent partitions can be called side-s and side-t respectively.
It is because of these properties that the strip 𝒟𝑠,𝑡 can be viewed as an

8

undirected analogue of a directed acyclic graph with a single source and a
single sink.

A cut in the strip 𝒟𝑠,𝑡 is said to be a transversal if each coherent path in
𝒟𝑠,𝑡 intersects it at most once. The following lemma provides the key insight
for representing all (𝑠, 𝑡)-mincuts through the strip 𝒟𝑠,𝑡.

Lemma 2.8 ([8]). 𝐴 ⊂ 𝑉 defines a (𝑠, 𝑡)-mincut if and only if 𝐴 is a transver-
sal in 𝒟𝑠,𝑡.

We now state the following two lemmas that can be viewed as a corollary
of Lemma 2.8.

Lemma 2.9. A (𝑠, 𝑡)-mincut contains a set of edges 𝐸𝑦 incident on vertex 𝑦
if and only if all edges in 𝐸𝑦 must belong to the same side of the inherent
partition of the node containing 𝑦 in strip 𝒟𝑠,𝑡.

Lemma 2.10. If 𝐴 ⊂ 𝑉 defines a (𝑠, 𝑡)-mincut with 𝑠 ∈ 𝐴, then 𝐴 can be
merged with the terminal node s in 𝒟𝑠,𝑡 to get the strip 𝒟𝐴,𝑡 that stores all
those (𝑠, 𝑡)-mincuts that enclose 𝐴.

Another simple observation helps us describe the nearest mincuts in the
strip.

Lemma 2.11. The mincuts defined by s and t are the nearest mincut from
𝑠 to 𝑡 and 𝑡 to 𝑠 respectively.

Consider any non-terminal node 𝑥. Let ℛ𝑠(𝑥) be the set of all the nodes
𝑦 in 𝒟𝑠,𝑡 that are reachable from 𝑥 through coherent paths that originate
from the side-s of the inherent partition of 𝑥 – notice that all these paths
will terminate at s. It follows from the construction that ℛ𝑠(𝑥) defines a
transversal in 𝒟𝑠,𝑡. We call ℛ𝑠(𝑥) the reachability cone of 𝑥 towards 𝑠.
The (𝑠, 𝑡)-mincut defined by ℛ𝑠(𝑥) is the nearest mincut from {𝑠, 𝑥} to 𝑡.
Interestingly, each transversal in 𝒟𝑠,𝑡, and hence each (𝑠, 𝑡)-mincut, is a union
of the reachability cones of a subset of nodes of 𝒟𝑠,𝑡 in the direction of 𝑠. We
now state the following Lemma that we shall crucially use.

Lemma 2.12 ([8]). If 𝑥1, . . . , 𝑥𝑘 are any non-terminal nodes in strip 𝒟𝑠,𝑡,
the union of the reachability cones of 𝑥𝑖’s in the direction of s defines the
nearest mincut between {𝑠, 𝑥1, . . . , 𝑥𝑘} and 𝑡.

9

2.2 Compact representation for all global min-
cuts

Let 𝑐𝑉 denote the value of the global mincut of the graph 𝐺. Dinitz,
Karzanov, and Lomonosov [5] showed that there exists a graph ℋ𝑉 of size
𝑂(𝑛) that compactly stores all global mincuts of 𝐺. Henceforth, we shall use
nodes and structural edges for vertices and edges of ℋ𝑉 respectively. There
exists a projection mapping 𝜋 : 𝑉 (𝐺)→ 𝑉 (ℋ𝑉) assigning a vertex of graph
𝐺 to a node in graph ℋ𝑉 . In this way, any cut (𝐴,𝐴) in cactus ℋ𝑉 is asso-
ciated to a cut (𝜋−1(𝐴), 𝜋−1(𝐴)) in the original graph 𝐺. The graph ℋ𝑉 has
a nice tree-like structure with the following properties.

1. Any two distinct simple cycle of ℋ𝑉 have at most a node in common.
This is equivalent to the property that each structural edge of ℋ𝑉

belongs to at most one simple cycle. Each cut in ℋ𝑉 either corresponds
to a tree edge or a pair of cycle edges in the same cycle.

2. If a stuctural edge belongs to a simple cycle, it is called a cycle edge
and its weight is 𝑐𝑉

2
. Otherwise, the structural edge is called a tree edge

and its weight is 𝑐𝑉 .

3. For any cut in the cactus ℋ𝑉 , the associated cut in graph 𝐺 is a global
mincut. Moreover, any global mincut in 𝐺 must have at least one
associated cut in ℋ𝑉 .

Let 𝜈 and 𝜇 be any two nodes in the cactusℋ𝑉 . If they belong to the same
cycle, say 𝑐, there are two paths between them on the cycle 𝑐 itself - their
union forms the cycle itself. Using the fact that any two cycles in ℋ𝑉 can
have at most one common node, it can be seen that these are the only paths
between 𝜈 and 𝜇. Using the same fact, if 𝜈 and 𝜇 are two arbitrary nodes in
the cactus, there exists a unique path of cycles and tree edges between these
two nodes. Any global mincut that separates 𝜈 from 𝜇 must correspond to
a cut in this path.

2.2.1 Construction of (𝑠, 𝑡)-strip from cactus

Suppose 𝑠, 𝑡 ∈ 𝑉 are two vertices such that 𝑐𝑠,𝑡 is same as the global mincut
value. So, each transversal of strip 𝒟𝑠,𝑡 corresponds to a global mincut that
separates 𝑠 and 𝑡. Recall that cactus ℋ𝑉 stores all global mincuts. So we

10

just need to contract it suitably so that only those cuts remain that separate
𝑠 and 𝑡. For this purpose, we compute the path of cycles and tree edges
between the nodes corresponding to 𝑠 and 𝑡 respectively. We compress each
of the subcactus rooted to this path to a single vertex. The resultant graph
we obtain will be the strip 𝒟𝑠,𝑡. The inherent partition of all the non-terminal
units can be determined using the endpoints of the edges in the path.

2.2.2 Tree representation for cactus

We shall now show that ℋ𝑉 can be represented as a tree structure. This tree
structure was also used by Dinitz and Westbrook in [9]. This representation
will simplify our analysis on the cactus.

We now provide the details of the graph structure 𝑇 (ℋ𝑉) that represents
ℋ𝑉 . The vertex set of 𝑇 (ℋ𝑉) consists of all the cycles and the nodes of the
cactus. For any node 𝜈 of the cactus ℋ𝑉 , let 𝑣(𝜈) denote the corresponding
vertex in 𝑇 (ℋ𝑉). Likewise, for any cycle 𝜋 in the cactus, let 𝑣(𝜋) denote the
corresponding vertex in 𝑇 (ℋ𝑉). We now describe the edges of 𝑇 (ℋ𝑉). Let 𝜈
be any node of ℋ𝑉 . Suppose there are 𝑗 cycles - 𝜋1, . . . , 𝜋𝑗 that pass through
it. We add an edge between 𝑣(𝜈) and 𝑣(𝜋𝑖) for each 1 ≤ 𝑖 ≤ 𝑗. Lastly, for
each vertex 𝜈(𝜋) in 𝑇 (ℋ𝑉) we store all its neighbours in the order in which
they appear in the cycle 𝜋 in ℋ𝑉 . This is done to ensure that information
about the order of vertices in each cycle is retained. This complete the
description of 𝑇 (ℋ𝑉). For a better understanding, the reader may refer to
Figure 2.1 that succinctly depicts the transformation carried out at a node
𝜈 of the cactus graph to build the corresponding graph structure 𝑇 (ℋ𝑉).

The fact that the graph structure 𝑇 (ℋ𝑉) is a tree follows from the prop-
erty that any two cycles in a cactus may have at most one vertex in common.
Let us root 𝑇 (ℋ𝑉) at any arbitrary vertex, say 𝑣(𝜈), for some node 𝜈 of ℋ𝑉 .
Since each cycle in ℋ𝑉 has at least 3 vertices, so each vertex corresponding
to a cycle of ℋ𝑉 will have at least 2 children each corresponding to distinct
nodes of ℋ𝑉 . This also shows that the number of cycles in ℋ𝑉 is at most
half of the number of nodes in ℋ𝑉 . Hence, the size of 𝑇 (ℋ𝑉) is of the order
of the number of nodes of ℋ𝑉 .

We know that if 𝜈 and 𝜇 are two nodes in the cactus, there exists a unique
path of cycles and tree edges between them. It follows from the construction
of 𝑇 (ℋ𝑉) that the unique path between the vertices 𝑣(𝜈) and 𝑣(𝜇) captures
the same path. Thus we state the following lemma.

11

Figure 2.1: Transformation of cactus ℋ𝑉 to the tree 𝑇 (ℋ𝑉).

Lemma 2.13. Let 𝜈, 𝜇 be any two arbitrary nodes in the cactus ℋ𝑉 . The
unique path between 𝑣(𝜈) and 𝑣(𝜇) in 𝑇 (ℋ𝑉) concisely captures all paths
between 𝜈 and 𝜇 in ℋ𝑆.

We root the tree 𝑇 (ℋ𝑉) at any arbitrary vertex and augment it suitably
so that it can answer any LCA query in 𝒪(1) time using [3]. Henceforth, we
shall use skeleton tree 𝑇 (ℋ𝑆) to denote this data structure.

2.3 Compact representation for all Steiner min-
cuts

Dinitz and Vainshtein [6] designed a data structure C𝑆 = (ℱ𝑆,ℋ𝑆, 𝜋𝑆) that
stores all the Steiner mincuts for a Steiner set 𝑆 ⊆ 𝑉 in the graph. We
present a summary of this data structure.

This data structure can be seen as a generalization of two already dis-
cussed data structures, (i) strip 𝒟𝑠,𝑡 storing all (𝑠, 𝑡)-mincuts, and (ii) cactus
graph ℋ𝑉 storing all global mincuts.

Two 𝑆-mincuts are said to be equivalent if they divide the Steiner set 𝑆 in
the same way. The equivalence classes thus formed are known as the bunches.
Similarly, two vertices are said to be equivalent if they are not separated by
any Steiner mincut. The equivalence classes thus formed are known as units.
A unit is called a Steiner unit if it contains at least a Steiner vertex.

Let (𝑆𝐵, 𝑆𝐵) be the 2−partition of Steiner set induced by a bunch ℬ. If
we compress all vertices in 𝑆𝐵 to 𝑠 and all vertices in 𝑆𝐵 to 𝑡, the strip 𝒟𝑠,𝑡

will store all cuts in ℬ. We shall denote this strip by 𝒟ℬ. Any such strip has

12

the following property – if two non-terminals nodes of two strips intersect
at even one vertex then these nodes coincide and the inherent partitions of
these nodes in both strips coincide as well.

The first component of the connectivity carcass is the flesh graph ℱ𝑆

which is a generalization of the strip. This graph is a quotient graph of
graph 𝐺. The vertices of ℱ𝑆 can be obtained by contracting each unit of 𝐺
to a single vertex. Thus, we denote the vertices of ℱ𝑆 simply by units. In
addition to it, each unit of ℱ𝑆 is assigned a 2−partition known as the inherent
partition on the set of edges incident on it. Any unit that appears as a non-
terminal in the strip corresponding to some bunch is called a stretched unit.
Otherwise, it is called a terminal unit. The inherent partition assigned to a
stretched unit consists of two sets of equal cardinality. On the other hand,
inherent partition assigned to a terminal unit is a trivial partition (one of
the set is empty). Note that all Steiner units are terminal units but the
reverse is not true. The concept of reachability in ℱ𝑆 is similar to the strip.
Whenever we say that a unit 𝑢 is reachable from unit 𝑢′, it means that there
exists a coherent path between 𝑢 and 𝑢′. The structure of ℱ𝑆 is such that a
coherent path cannot start and finish at a single unit and hence, ℱ𝑆 is in a
sense acyclic. There is a one-to-one correspondence between transversals in
ℱ𝑆 and Steiner mincuts in 𝐺.

The second component of the connectivity carcass, skeleton ℋ𝑆, is a cac-
tus graph. To avoid confusion with the original graph, the vertices and edges
of the skeleton will be referred to as nodes and structural edges respectively.
Each terminal unit of ℱ𝑆 is mapped to a node in the skeleton ℋ𝑆 by pro-
jection mapping 𝜋𝑆. A stretched unit on the other hand is mapped to a
set of edges corresponding to a proper path in ℋ𝑆 by 𝜋𝑆. A proper path in
the skeleton refers to an alternating sequence of nodes and structural edges
(𝜈1, 𝜖1, 𝜈2, ..., 𝜈𝑘) such that 𝜖𝑖 is incident on 𝜈𝑖−1 and 𝜈𝑖 and it intersects each
cycle of the skeleton at at most one structural edge. All the bunches can
be stored in a skeleton ℋ𝑆 in the form of subbunches (disjoint subsets of
a bunch). Each cut in skeleton corresponds to a subbunch. The strip 𝒟ℬ
corresponding to this subbunch ℬ can be obtained as follows. Let the cut in
the skeleton separates it into two subcactuses ℋ𝑆(ℬ) and ℋ̄𝑆(ℬ). If 𝑃 (𝜈1, 𝜈2)
be the path in the skeleton to which a unit 𝑢 is mapped, it will be placed in
𝒟ℬ as follows.

• If both 𝜈1 and 𝜈2 lie in ℋ𝑆(ℬ) (or ℋ̄𝑆(ℬ)) 𝑢 is contracted in source (or
sink).

13

• Otherwise, 𝑢 is kept as a non-terminal unit.

Now we discuss an important property between the reachability of a
stretched unit 𝑢 and the proper path to which it is mapped in the skele-
ton ℋ𝑆.

Lemma 2.14 ([7]). Let 𝑢 be a stretched unit and 𝑢′ be any arbitrary unit in
the flesh ℱ𝑆 and 𝜋𝑆(𝑢) = 𝑃 (𝜈1, 𝜈2), 𝜋𝑆(𝑢′) = 𝑃 (𝜈3, 𝜈4). If 𝑢′ is reachable from
𝑢 in direction 𝜈2, then both these paths are extendable to a larger proper
path with 𝑃 (𝜈1, 𝜈2) as the initial part and 𝑃 (𝜈3, 𝜈4) as the final part.

Lemma 2.15 ([6]). Let 𝑠, 𝑡 ∈ 𝑆 such that 𝑐𝑠,𝑡 = 𝑐𝑆. Given the connectivity
carcass C𝑆 storing all Steiner mincuts, the strip 𝒟𝑠,𝑡 can be constructed in
time linear in the size of flesh graph.

It is important to note that nearest 𝑠 to 𝑡 and 𝑡 to 𝑠 mincuts are easier to
identify in the connectivity carcass. The following lemma conveys the fact.

Lemma 2.16 ([6]). Let 𝑠, 𝑡 ∈ 𝑆 such that 𝑐𝑠,𝑡 = 𝑐𝑆. Determining if a unit
𝑢 lies in nearest 𝑠 to 𝑡 mincut (or vice-versa) can be done using skeleton ℋ𝑆

and projection mapping 𝜋𝑆 using 𝒪(1) LCA queries on skeleton tree.

The size of flesh ℱ𝑆 is 𝒪(min(𝑚, �̃�𝑐𝑆)) where �̃� is the number of units
in ℱ𝑆. The size taken by skeleton is linear in the number of Steiner units.
Thus, overall space taken by the connectivity carcass is 𝒪(min(𝑚, �̃�𝑐𝑆)).

2.4 Compact representation of all-pairs min-
cuts values

We describe first a hierarchical data structure of Katz, Katz, Korman and
Peleg [14] that was used for compact labeling scheme for all-pairs mincuts.
This hierarchical data structure is actually a rooted tree, denoted by 𝒯𝐺
henceforth. The key insight on which this tree is built is an equivalence
relation defined for a Steiner set 𝑆 ⊆ 𝑉 as follows.

Definition 2.17 (Relation ℛ𝑆). Any two vertices 𝑎, 𝑏 ∈ 𝑆 are said to be
related by ℛ𝑆, that is (𝑎, 𝑏) ∈ ℛ𝑆, if 𝑐𝑎,𝑏 > 𝑐𝑆, where 𝑐𝑆 is the value of a
Steiner mincut of 𝑆.

14

By using ℛ𝑆 for various carefully chosen instances of 𝑆, we can build the
tree structure 𝒯𝐺 in a top-down manner as follows. Each node 𝜈 of the tree
will be associated with a Steiner set, denoted by 𝑆(𝜈), and the equivalence
relation ℛ𝑆(𝜈). To begin with, for the root node 𝑟, we associate 𝑆(𝑟) = 𝑉 .
Using ℛ𝑆(𝜈), we partition 𝑆(𝜈) into equivalence classes. For each equivalence
class, we create a unique child node of 𝜈; the Steiner set associated with this
child will be the corresponding equivalence class. We process the children of
𝜈 recursively along the same lines. We stop when the corresponding Steiner
set is a single vertex.

It follows from the construction described above that the tree 𝒯𝐺 will
have 𝑛 leaves - each corresponding to a vertex of 𝐺. The size of 𝒯𝐺 will be
𝑂(𝑛) since each internal node has at least 2 children. Notice that 𝑆(𝜈) is the
set of vertices present at the leaf nodes of the subtree of 𝒯𝐺 rooted at 𝜈. The
following observation captures the relationship between a parent and child
node in 𝒯𝐺.

Observation 2.18. Suppose 𝜈 ∈ 𝒯𝐺 and 𝜇 is its parent. 𝑆(𝜈) comprises of
a maximal subset of vertices in 𝑆(𝜇) with connectivity strictly greater than
that of 𝑆(𝜇).

The following observation conveys an important property about the value
of (𝑠, 𝑡)-mincut for any two vertices 𝑠, 𝑡 ∈ 𝑉 .

Observation 2.19. Suppose 𝑠, 𝑡 ∈ 𝑉 are two vertices and 𝜇 is their LCA in
𝒯𝐺 then 𝑐𝑠,𝑡 = 𝑐𝑆(𝜇).

15

Chapter 3

𝒪(𝑛2) space sensitivity oracle for
all-pairs mincuts

3.1 Edge-containment query for fixed 𝑠, 𝑡 ∈ 𝑉

Consider the problem of identifying if a given edge (𝑥, 𝑦) lies in a (𝑠, 𝑡)-mincut
for a designated pair of vertices 𝑠, 𝑡 ∈ 𝑉 . It is quite evident that an edge
(𝑥, 𝑦) lies in a (𝑠, 𝑡)-mincut if 𝑥 and 𝑦 are mapped to different nodes in the
strip 𝒟𝑠,𝑡. This query can be reported in 𝒪(1) time by storing the node
mapping of each vertex in 𝒪(𝑛) space.

Reporting a (𝑠, 𝑡)-mincut that contains edge (𝑥, 𝑦) requires more insights.
Without loss in generality, assume that edge (𝑥, 𝑦) lies in side-t of x. If x is
the same as s, the set of vertices mapped to node s define a (𝑠, 𝑡)-mincut that
contains (𝑥, 𝑦). Thus, assume that x is a non-terminal in the strip 𝒟𝑠,𝑡. It is
important to observe that set of vertices mapped to nodes in the reachability
cone of x towards s, ℛ𝑠(x), defines a (𝑠, 𝑡)-mincut that contains edge (𝑥, 𝑦).
However, reporting this mincut requires 𝒪(𝑚) time and 𝒪(𝑚) space.

To achieve better space and query time, we report another (𝑠, 𝑡)-mincut
that contains (𝑥, 𝑦) and has a simpler structure. Suppose 𝜏 is a topological
ordering on the node set of strip 𝒟𝑠,𝑡 with 𝜏(s) = 0. We show that storing the
node mapping of each vertex and topological number of each node 𝜏 of the
strip 𝒟𝑠,𝑡 can be used to report a (𝑠, 𝑡)-mincut efficiently. This data structure
takes only 𝒪(𝑛) space and can report a (𝑠, 𝑡)-mincut containing edge (𝑥, 𝑦)
in 𝒪(𝑛) time. We state the following lemma.

16

Lemma 3.1. Consider the strip 𝒟𝑠,𝑡 with x as a non-terminal, and edge
(𝑥, 𝑦) lies on side-t of x. Suppose 𝜏 is a topological order on the nodes in
the strip. The set of vertices mapped to nodes in set 𝑋 = {𝑢 | 𝜏(𝑢) ≤ 𝜏(x)}
defines a (𝑠, 𝑡)-mincut that contains edge (𝑥, 𝑦).

3.2 Edge-containment query for Steiner set 𝑆

Suppose 𝑆 is a designated Steiner set and 𝑠, 𝑡 ∈ 𝑆 are Steiner vertices sepa-
rated by some Steiner mincut. We can determine if an edge (𝑥, 𝑦) ∈ 𝐸 belongs
to some (𝑠, 𝑡)-mincut using the strip 𝒟𝑠,𝑡 that can be built from the connec-
tivity carcass. However, the construction of strip requires 𝒪(min(𝑚,𝑛𝑐𝑆))
time. Interestingly, we show that only the skeleton and the projection map-
ping of the connectivity carcass are sufficient for answering this query in
constant time. Moreover, the skeleton and the projection mapping occupy
only 𝒪(𝑛) space compared to the 𝒪(min(𝑚,𝑛𝑐𝑆)) space occupied by the
entire connectivity carcass.

Similar to the projection mapping of the stretched units, Dinitz and Vain-
shtein [8] introduced the notion of projection mapping for edges as follows.
Suppose (𝑥, 𝑦) ∈ 𝐸. If 𝑥 and 𝑦 belong to the same unit, then 𝑃 (𝑥, 𝑦) = ∅. If
𝑥 and 𝑦 belong to distinct terminal units mapped to nodes, say 𝜈1 and 𝜈2, in
the skeleton ℋ𝑆, then 𝑃 (𝑥, 𝑦) = 𝑃 (𝜈1, 𝜈2). If at least one of them belongs to
a stretched unit, 𝑃 (𝑥, 𝑦) is the extended path defined in Lemma 2.14. This
allows us to state the following lemma which follows from the construction
of a strip corresponding to a subbunch given in Section 2.3.

Lemma 3.2 ([6]). Edge (𝑥, 𝑦) ∈ 𝐸 appears in the strip corresponding to a
subbunch if and only if one of the structural edge in the cut of ℋ𝑆 corre-
sponding to this subbunch lies in 𝑃 (𝑥, 𝑦).

We state the necessary and sufficient condition for an edge (𝑥, 𝑦) to lie in
an (𝑠, 𝑡)-mincut. Note that two paths are said to intersect in the skeleton if
the unique path of cycle and tree edges in both the paths intersect at some
cycle or tree edge.

Lemma 3.3. Edge (𝑥, 𝑦) ∈ 𝐸 belongs to a (𝑠, 𝑡)-mincut if and only if the
proper path 𝑃 (𝑥, 𝑦) intersects a path between the nodes containing 𝑠 and 𝑡
in in ℋ𝑆.

17

Proof. Let 𝜈1 and 𝜈2 be the nodes in ℋ𝑆 containing 𝑠 and 𝑡 respectively. A
cut inℋ𝑆 corresponding to any tree-edge (or pair of cycle edges in same cycle)
in the path from 𝜈1 to 𝜈2 defines a subbunch separating 𝑠 from 𝑡. Moreover,
it follows from the structure of the skeleton that no other cut in the skeleton
corresponds to a subbunch separating 𝑠 from 𝑡. Suppose (𝑥, 𝑦) lies in some
(𝑠, 𝑡)-mincut. Thus, it must be in some subbunch separating 𝑠 from 𝑡. From
the above discussion, we know that this subbunch must correspond to a cut
in the path from 𝜈1 to 𝜈2 in skeleton ℋ𝑆. Moreover, it follows from Lemma
3.2 that 𝑃 (𝑥, 𝑦) contains one of the structural edge in this cut. This implies
that 𝑃 (𝑥, 𝑦) intersects the path from 𝜈1 to 𝜈2 in skeleton ℋ𝑆.

Now, consider the other direction of this proof. Suppose 𝑃 (𝑥, 𝑦) and the
path from 𝜈1 to 𝜈2 intersect at some cycle (or tree edge) 𝑐. Let 𝑒1 and 𝑒2 be
structural edges belonging to the cycle 𝑐 that are part of 𝑃 (𝑥, 𝑦) and path
from 𝜈1 to 𝜈2 respectively (in the case of tree edge 𝑒1 = 𝑒2 = 𝑐). Consider
the cut in the skeleton corresponding to structural edges 𝑒1 and 𝑒2. It follows
from Lemma 3.2 that (𝑥, 𝑦) lies in the strip corresponding to this subbunch.
Since this cut separates 𝜈1 from 𝜈2 in ℋ𝑆, therefore the subbunch separates
𝑠 from 𝑡.

We can check if paths 𝑃 (𝜈1, 𝜈2) and 𝑃 (𝑠, 𝑡) in the skeleton ℋ𝑆 intersect
with 𝒪(1) LCA queries on skeleton tree 𝒯 (ℋ𝑆) (using Lemma ??). Thus, we
can store the skeleton tree 𝒯 (ℋ𝑆) and projection mapping in 𝒪(𝑛) space and
determine if an edge (𝑥, 𝑦) lies in an (𝑠, 𝑡)-mincut for 𝑐𝑠,𝑡 = 𝑐𝑆 and 𝑠, 𝑡 ∈ 𝑆
in 𝒪(1) time.

Reporting a (𝑠, 𝑡)-mincut that contains edge (𝑥, 𝑦) again requires more
insights. Assume that 𝑃 (𝑠, 𝑡) and 𝑃 (𝜈1, 𝜈2) intersect at some tree edge or
cycle. Let 𝑒 be a tree or cycle-edge in proper path 𝑃 (𝜈1, 𝜈2) that lies in
intersection of these two paths. Suppose ℬ is a subbunch corresponding to a
cut in the skeleton ℋ𝑆 that contains 𝑒 and separates 𝑠 from 𝑡 and 𝒟ℬ be the
strip corresponding to this subbunch. Without loss in generality, assume that
𝜈1 lies in the side of source 𝑠 in this strip (denoted by s). Using Lemma 3.2,
it is evident that edge (𝑥, 𝑦) lies in strip 𝒟ℬ. Assume x is a stretched unit in
this strip, otherwise the source s is the required (𝑠, 𝑡)-mincut. Suppose (𝑥, 𝑦)
lies in side-t of x. The set of vertices mapped to ℛ𝑠(x), i.e. reachability cone
of x towards s in this strip, defines a (𝑠, 𝑡)-mincut that contains edge (𝑥, 𝑦).
However, reporting this mincut is a tedious task. We must have the flesh ℱ𝑆

to construct the strip 𝒟ℬ and then report the set ℛ𝑠(x). This would require
𝒪(𝑚) space and 𝒪(𝑚) time.

18

It is important to observe that the difficulty we face here is similar to
the one highlighted in Section 3.1. To achieve better space and query time,
we use similar ideas as used in Section 3.1. We aim to report another (𝑠, 𝑡)-
mincut that contains (𝑥, 𝑦) and has a simpler structure. In particular, we
aim to report a set of units 𝑋 = {𝑢 | 𝜏ℬ(𝑢) ≤ 𝜏ℬ(x)} for some topological
ordering 𝜏ℬ of nodes in strip 𝒟ℬ. Using Lemma 3.1, we know that set of
vertices mapped to nodes in set 𝑋 defines a (𝑠, 𝑡)-mincut that contains edge
(𝑥, 𝑦). Clearly, storing topological order for each stretched unit for each
possible bunch in which it appear as a non-terminal is not an option. This
is because doing so will require a lot of space. Thus, we try to devise an
algorithm to efficiently identify set 𝑋 on without compromising 𝒪(𝑛) size of
the data structure.

Consider the data structure formed by the following components – (i)
the skeleton tree 𝒯 (ℋ𝑆), (ii) the projection mapping 𝜋𝑆 of all units and (iii)
a mapping 𝜏 from each stretched unit to a number. For all stretched units
mapped to path 𝑃 (𝜈1, 𝜈2), 𝜏 assigns a topological order on these stretched
units as they appear in the (𝜈1, 𝜈2)-strip. We now show how this additional
augmentation will help us report a (𝑠, 𝑡)-mincut containing edge (𝑥, 𝑦) effi-
ciently.

In order to make the ideas more simple, we describe a transitive relation
between proper paths on skeleton called extendable in a direction.

Definition 3.4 (Extendable in a direction). Consider two proper paths 𝑃1 =
𝑃 (𝜈1, 𝜈2) and 𝑃2 = 𝑃 (𝜈3, 𝜈4). 𝑃2 is said to be extendable from 𝑃1 in direction
𝜈2 if proper paths 𝑃1 and 𝑃2 are extendable to a proper path 𝑃 (𝜈, 𝜈 ′) with
𝑃1 as the initial part and 𝑃2 as the final part.

Moreover, verifying if 𝑃 (𝜈3, 𝜈4) is extendable from 𝑃 (𝜈1, 𝜈2) in direction
𝜈2 can be done in 𝒪(1) LCA queries on the skeleton tree.

Suppose stretched unit x is mapped to path 𝑃 (𝜈, 𝜈 ′). Consider the set 𝑋
formed by stretched units appearing as non-terminals in strip 𝒟ℬ for which
one of the following holds true – (i) the stretched unit (say 𝑣) is mapped
to 𝑃 (𝜈, 𝜈 ′) and 𝜏(𝑣) ≤ 𝜏(x), and (ii) the stretched unit is not mapped to
𝑃 (𝜈, 𝜈 ′) but 𝜋𝑆(𝑣) is extendable from 𝑃 (𝜈, 𝜈 ′) in direction 𝜈. We state the
following lemma.

Lemma 3.5. The vertices mapped to units in s ∪ 𝑋 define a (𝑠, 𝑡)-mincut
and contains all the edges in side-t of the inherent partition of x.

19

Proof. Consider 𝑢 ∈ 𝑋 to be a non-terminal unit in 𝒟ℬ. We shall show that
ℛs(𝑢) ∖ s ⊆ 𝑋, i.e. reachability cone of 𝑢 towards source s in the strip 𝒟ℬ
avoiding s is a subset of 𝑋. It follows from the construction that 𝑢 is either
projected to 𝑃 (𝜈, 𝜈 ′) or 𝜋𝑆(𝑢) is extendable in direction 𝜈 from 𝑃 (𝜈, 𝜈 ′). Con-
sider any unit 𝑣 in ℛs(𝑢)∖s. Suppose 𝑢 and 𝑣 are both projected to 𝑃 (𝜈, 𝜈 ′).
Since, 𝑣 is reachable from 𝑢 in direction 𝜈, it follows that 𝜏(𝑣) < 𝜏(𝑢) < 𝜏(x).
Thus, 𝑣 ∈ 𝑋. Now, suppose 𝑣 is not projected to 𝑃 (𝜈, 𝜈 ′). In this case, 𝜋𝑆(𝑣)
is extendable from 𝑃 (𝜈, 𝜈 ′) in direction 𝜈 (from Theorem 2.14). It follows
from the transitivity of Definition 3.4 that 𝜋𝑆(𝑣) is extendable from 𝜋𝑆(𝑢)
in direction 𝜈. Thus, 𝑣 ∈ 𝑋. Therefore, s ∪𝑋 defines a (𝑠, 𝑡)-mincut (from
Lemma 2.8).

Now, we prove the second part of the lemma. Consider any edge (𝑥, 𝑧) in
the side-t. If 𝑧 is in t then 𝑧 ̸∈ 𝑋 from the construction. Assume that 𝑧 is a
non-terminal unit in 𝒟ℬ. If 𝑧 is projected to path 𝑃 (𝜈, 𝜈 ′) then 𝜏(𝑧) > 𝜏(𝑢).
Thus, 𝑧 ̸∈ 𝑋. Otherwise 𝜋𝑆(𝑧) is extendable from 𝑃 (𝜈, 𝜈 ′) in direction 𝜈 ′.
It follows from Definition 3.4 that 𝑧 ̸∈ 𝑋. Thus, the cut defined by s ∪ 𝑋
contains all edges in side-t of the inherent partition of x.

This data structure occupies 𝒪(𝑛) space and can report a (𝑠, 𝑡)-mincut
containing edge (𝑥, 𝑦) in 𝒪(𝑛) time. We shall use this data structure to build
a sensitivity oracle for all-pairs mincuts.

3.3 Edge-containment query for all-pairs Min-
cuts

The hierarchical tree structure of Katz, Katz, Korman and Peleg [14] can be
suitably augmented to design a sensitivity oracle for all-pairs mincuts. We
augment each internal node 𝜈 of the hierarchy tree 𝒯𝐺 by the data structure
discussed in Section 3.2 for the Steiner set 𝑆(𝜈). Determining if given edge
(𝑥, 𝑦) lies in some (𝑠, 𝑡)-mincut for given pair of vertices 𝑠, 𝑡 ∈ 𝑉 can be done
using Algorithm 1 in constant time.

20

Algorithm 1 Single edge-containment queries in 𝒪(𝑛2) data structure
1: procedure edge-cotained(𝑠, 𝑡, 𝑥, 𝑦)
2: 𝜇← LCA(𝒯𝐺, 𝑠, 𝑡)
3: 𝒫1 ← 𝑃 (𝜋𝑆(𝜇)(𝑠), 𝜋𝑆(𝜇)(𝑡))
4: 𝒫2 ← 𝑃 (𝑥, 𝑦)
5: if 𝒫1 ∩ 𝒫2 = ∅ then //Check if paths intersect
6: return False
7: else
8: return True
9: end if

10: end procedure

3.4 Edge-insertion query on Data Structure

Determining whether insertion of an edge (𝑥, 𝑦) increases the (𝑠, 𝑡)-mincut is
comparatively simpler. Again, let 𝜇 be the LCA of 𝑠 and 𝑡 in 𝒯𝐺. For sake
of simplicity, assume that 𝑥, 𝑦, 𝑠 and 𝑡 be units in flesh graphs corresponding
to vertices 𝑥, 𝑦, 𝑠 and 𝑡 respectively. Using Lemma 2.4, we only need to
determine if 𝑥 ∈ 𝑠𝑁𝑡 and 𝑦 ∈ 𝑡𝑁𝑠 or vice-versa. Using Lemma 2.16, we can
perform this operation in 𝒪(1) time. Reporting (𝑠, 𝑡)-mincut after insertion
of an edge can be done in 𝒪(𝑛) time (using Lemma 2.16) as 𝑠𝑁𝑡 is one such
mincut. Thus, we can summarize the results of previous two sections in the
following theorem.

Theorem 3.6. Given an undirected unweighted multigraph 𝐺 = (𝑉,𝐸) on
𝑛 = |𝑉 | vertices, there exists an 𝒪(𝑛2) size sensitivity oracle that can report
the value of (𝑠, 𝑡)-mincut for any 𝑠, 𝑡 ∈ 𝑉 upon insertion/deletion of an edge.
A (𝑠, 𝑡)-mincut incorporating the insertion/deletion can be reported in 𝒪(𝑛)
time.

21

Chapter 4

Conditional Lower Bounds on
Mincut Data Structures

4.1 Strip representation of reachability in di-
rected graphs

The problem of reachability in directed graph is as follows – Given a directed
graph

#»

𝐺, preprocess it to form a data structure which can efficiently report
if a given vertex 𝑣 is reachable from another vertex 𝑢. The problem becomes
interesting if we allow the underlying graph to be sparse. Is there any data
structure that takes 𝑜(𝑛2) space and still offers efficient query time? Patrascu
[15] stated it as a difficult open problem and also gave a partial answer to
it. In particular, if constant query time is required, the space needs to be
𝑛1+Ω(1). Goldstein et al [10] stated a conjecture that concisely conveys the
belief.

Conjecture 4.1 (Directed Reachability Hypothesis [10]). Any data structure
for the problem of reachability in directed graphs must either use Ω̃(𝑛2) space,
or linear query time.

The reachability in
#»

𝐺 is same as reachability in 𝐺𝑆𝐶𝐶 , a directed acyclic
graph which can be obtained by contracting each of the Strongly Connected
Components (SCCs) to a single vertex. Henceforth, we shall assume that

#»

𝐺
is a directed acyclic graph.

We can transform a directed acyclic graph
#»

𝐺 into a (𝑠, 𝑡)-strip 𝒟𝑠,𝑡 as
follows. Create two additional vertices, namely 𝑠 and 𝑡. Suppose ∆𝑣 denotes

22

the difference in indegree and outdegree of any vertex 𝑣 in 𝑉 (
#»

𝐺). For each
vertex 𝑣 ∈ 𝑉 (

#»

𝐺), if ∆𝑣 > 0 we add ∆𝑣 edges from 𝑣 to 𝑡. Likewise, if ∆𝑣 < 0
we add |∆𝑣| edges from 𝑠 to 𝑣. Lastly, add two additional edge(s) from 𝑠 to
𝑣 and 𝑣 to 𝑡 for all 𝑣 ∈ 𝑉 (

#»

𝐺). Note that the resultant graph is a strip by
making all the edges undirected and taking the inedges and outedges as the
inherent partition of each non-terminal unit. Moreover, the number of edges
in this graph is only 𝒪(𝑚). A non-terminal unit 𝑣 is reachable from another
non-terminal unit 𝑢 if and only if there exists a coherent path from 𝑢 to 𝑣 in
𝒟𝑠,𝑡. Thus, we state the following lemma.

Lemma 4.2. For a directed graph
#»

𝐺 with 𝑛 vertices and 𝑚 edges, there exists
a strip𝒟𝑠,𝑡 with𝒪(𝑚) edges and 𝑛+2 vertices such that Reachable(

#»

𝐺, 𝑢, 𝑣)
is true if and only if there exists a coherent path from 𝑢 to 𝑣 in the strip 𝒟𝑠,𝑡.

4.2 Conditional Lower Bound for Generalized
Flow Tree for 2 × 2 mincuts

We shall show how to transform a Reachable query to a 2×2 static mincut
query on the strip 𝒟𝑠,𝑡. Although we show a reduction of query to strip
𝒟𝑠,𝑡, the reduction applies to the underlying undirected unweighted graph 𝐺
composed of nodes and edges from 𝒟𝑠,𝑡. Without loss in generality, assume
𝑣 exceeds 𝑢 in some topological ordering. We state the following lemma.

Lemma 4.3. Suppose 𝑢 and 𝑣 are two vertices of a directed graph
#»

𝐺 and
𝒟𝑠,𝑡 be the corresponding strip representation. Moreover, 𝑣 exceeds 𝑢 in
some topological ordering of 𝒟𝑠,𝑡. Reachable(

#»

𝐺, 𝑢, 𝑣) evaluates to true if
and only if Mincut({𝑠, 𝑣}, {𝑢, 𝑡}) > 𝑐𝑠,𝑡.

Proof. Suppose Reachable(
#»

𝐺, 𝑢, 𝑣) is true. Using Lemma 4.2, there exists
a coherent path from 𝑢 to 𝑣. Thus, 𝑢 ∈ ℛ𝑠(𝑣). It follows from 2.12, that 𝑢
lies in nearest {𝑠, 𝑣} to 𝑡 mincut. Therefore, there is no {𝑠, 𝑣} to 𝑡 mincut
that keeps 𝑢 on the side of 𝑡. Therefore, Mincut({𝑠, 𝑣}, {𝑢, 𝑡}) > Min-
cut({𝑠, 𝑣}, 𝑡) = 𝑐𝑠,𝑡. If Reachable(

#»

𝐺, 𝑢, 𝑣) is false, 𝑢 ̸∈ ℛ𝑠(𝑣). Thus,
ℛ𝑠(𝑣) is a (𝑠, 𝑡)-mincut as well as a ({𝑠, 𝑣}, {𝑢, 𝑡})-mincut. Thus, Min-
cut({𝑠, 𝑣}, {𝑢, 𝑡}) = 𝑐𝑠,𝑡.

Using Conjecture 4.1 and Lemma 4.3 we state the following conditional
lower bound.

23

Theorem 4.4. Assuming Directed Reachability Hypothesis holds, any data
structure that can report the value of ({𝑠, 𝑣}, {𝑢, 𝑡})-mincut for given 𝑢, 𝑣 ∈ 𝑉
and designated 𝑠, 𝑡 ∈ 𝑉 in an undirected unweighted multigraph 𝐺 must
either use Ω̃(𝑛2) space, or linear query time.

4.3 Conditional Lower Bound for dual-fault-
tolerant (𝑠, 𝑡)-mincut

We show that Reachable(
#»

𝐺, 𝑢, 𝑣) can be determined using the fault-tolerant
query FT-Mincut(𝑠, 𝑡, {(𝑠, 𝑢), (𝑣, 𝑡)}) on the strip 𝒟𝑠,𝑡. 𝑣 is reachable from
𝑢 if and only if the fault-tolerant query returns value equal to the original
mincut between 𝑠 and 𝑡 less unity. In other words, 𝑣 is reachable from 𝑢, if
and only if FT-Mincut(𝑠, 𝑡, {(𝑠, 𝑢), (𝑣, 𝑡)}) = 𝑐𝑠,𝑡−1. We state the following
lemma.

Lemma 4.5. Suppose 𝑢 and 𝑣 are two vertices of a directed graph
#»

𝐺 and
𝒟𝑠,𝑡 be the corresponding strip representation. Moreover, 𝑣 exceeds 𝑢 in
some topological ordering of 𝒟𝑠,𝑡. Reachable(

#»

𝐺, 𝑢, 𝑣) evaluates to true if
and only if FT-Mincut(𝑠, 𝑡, {(𝑠, 𝑢), (𝑣, 𝑡)}) = 𝑐𝑠,𝑡 − 1.

Proof. It is easy to observe that FT-Mincut(𝑠, 𝑡, {(𝑣, 𝑡)}) = 𝑐𝑠,𝑡 − 1. Thus,
FT-Mincut(𝑠, 𝑡, {(𝑠, 𝑢), (𝑣, 𝑡)}) ≤ 𝑐𝑠,𝑡− 1. We give a simple proof by failing
one edge at a time.

Suppose edge (𝑣, 𝑡) is removed. As a result, new (𝑠, 𝑡)-mincuts are those
which contain edge (𝑣, 𝑡), i.e. keep 𝑣 on side of 𝑠. These mincuts corre-
spond to all ({𝑠, 𝑣}, 𝑡)-mincuts in strip 𝒟𝑠,𝑡. Now, removal of edge (𝑠, 𝑢)
decreases the value further if and only if there exists an ({𝑠, 𝑣}, 𝑡)-mincut
in 𝒟𝑠,𝑡 that keeps 𝑢 on side of 𝑡. Thus, FT-Mincut(𝑠, 𝑡, {(𝑠, 𝑣), (𝑢, 𝑡)}) =
𝑐𝑠,𝑡 − 1 if and only if Mincut({𝑠, 𝑣}, {𝑢, 𝑡}) > 𝑐𝑠,𝑡. Using Lemma 4.3, FT-
Mincut(𝑠, 𝑡, {(𝑠, 𝑣), (𝑢, 𝑡)}) = 𝑐𝑠,𝑡 − 1 if and only if 𝑣 is reachable from 𝑢 in
#»

𝐺.

Using Conjecture 4.1 and Lemma 4.5 we state the following conditional
lower bound.

Theorem 4.6. Assuming Directed Reachability Hypothesis holds, any data
structure that can report the value of (𝑠, 𝑡)-mincut for designated 𝑠, 𝑡 ∈ 𝑉

24

upon failure of 2 edges in an undirected unweighted multigraph 𝐺 must either
use Ω̃(𝑛2) space, or linear query time.

25

Bibliography

[1] Surender Baswana, Shiv Kumar Gupta, and Till Knollmann. Mincut
sensitivity data structures for the insertion of an edge. In Fabrizio
Grandoni, Grzegorz Herman, and Peter Sanders, editors, 28th Annual
European Symposium on Algorithms, ESA 2020, September 7-9, 2020,
Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 12:1–
12:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[2] Surender Baswana and Abhyuday Pandey. Fault-tolerant all-pairs min-
cuts. CoRR, abs/2011.03291, 2020.

[3] Michael A. Bender, Martin Farach-Colton, Giridhar Pemmasani, Steven
Skiena, and Pavel Sumazin. Lowest common ancestors in trees and
directed acyclic graphs. J. Algorithms, 57(2):75–94, 2005.

[4] Li Chen, Gramoz Goranci, Monika Henzinger, Richard Peng, and
Thatchaphol Saranurak. Fast dynamic cuts, distances and effective re-
sistances via vertex sparsifiers. CoRR, abs/2005.02368, 2020.

[5] E.A. Dinitz, A.V. Karzanov, and M.V. Lomonosov. On the structure of
a family of minimum weighted cuts in a graph. In Studies in Discrete
Optimizations, 1976.

[6] Yefim Dinitz and Alek Vainshtein. The connectivity carcass of a vertex
subset in a graph and its incremental maintenance. In Frank Thomson
Leighton and Michael T. Goodrich, editors, Proceedings of the Twenty-
Sixth Annual ACM Symposium on Theory of Computing, 23-25 May
1994, Montréal, Québec, Canada, pages 716–725. ACM, 1994.

[7] Yefim Dinitz and Alek Vainshtein. Locally orientable graphs, cell struc-
tures, and a new algorithm for the incremental maintenance of connec-
tivity carcasses. In Kenneth L. Clarkson, editor, Proceedings of the Sixth

26

Annual ACM-SIAM Symposium on Discrete Algorithms, 22-24 January
1995. San Francisco, California, USA, pages 302–311. ACM/SIAM,
1995.

[8] Yefim Dinitz and Alek Vainshtein. The general structure of edge-
connectivity of a vertex subset in a graph and its incremental main-
tenance. odd case. SIAM J. Comput., 30(3):753–808, 2000.

[9] Yefim Dinitz and Jeffery R. Westbrook. Maintaining the classes of 4-
edge-connectivity in a graph on-line. Algorithmica, 20(3):242–276, 1998.

[10] Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat.
Conditional lower bounds for space/time tradeoffs. In Faith Ellen, An-
tonina Kolokolova, and Jörg-Rüdiger Sack, editors, Algorithms and Data
Structures - 15th International Symposium, WADS 2017, St. John’s, NL,
Canada, July 31 - August 2, 2017, Proceedings, volume 10389 of Lecture
Notes in Computer Science, pages 421–436. Springer, 2017.

[11] R. E. Gomory and T. C. Hu. Multi-terminal network flows. Journal of
the Society for Industrial and Applied Mathematics, 9(4):551–570, 1961.

[12] Gramoz Goranci, Monika Henzinger, and Mikkel Thorup. Incremental
exact min-cut in polylogarithmic amortized update time. ACM Trans.
Algorithms, 14(2):17:1–17:21, 2018.

[13] Tanja Hartmann and Dorothea Wagner. Fast and simple fully-dynamic
cut tree construction. In Kun-Mao Chao, Tsan-sheng Hsu, and Der-Tsai
Lee, editors, Algorithms and Computation - 23rd International Sympo-
sium, ISAAC 2012, Taipei, Taiwan, December 19-21, 2012. Proceed-
ings, volume 7676 of Lecture Notes in Computer Science, pages 95–105.
Springer, 2012.

[14] Michal Katz, Nir A. Katz, Amos Korman, and David Peleg. Labeling
schemes for flow and connectivity. SIAM J. Comput., 34(1):23–40, 2004.

[15] Mihai Patrascu. Unifying the landscape of cell-probe lower bounds.
SIAM J. Comput., 40(3):827–847, 2011.

[16] Jean-Claude Picard and Maurice Queyranne. On the structure of all
minimum cuts in a network and applications. Math. Program., 22(1):121,
1982.

27

[17] Mikkel Thorup. Fully-dynamic min-cut. Comb., 27(1):91–127, 2007.

28

	Introduction
	Previous Results
	Our Contribution
	Related Work

	Preliminaries
	Compact representation for all (s,t)-mincuts
	Compact representation for all global mincuts
	Construction of (s,t)-strip from cactus
	Tree representation for cactus

	Compact representation for all Steiner mincuts
	Compact representation of all-pairs mincuts values

	O(n2) space sensitivity oracle for all-pairs mincuts
	Edge-containment query for fixed s,t V
	Edge-containment query for Steiner set S
	Edge-containment query for all-pairs Mincuts
	Edge-insertion query on Data Structure

	Conditional Lower Bounds on Mincut Data Structures
	Strip representation of reachability in directed graphs
	Conditional Lower Bound for Generalized Flow Tree for 22 mincuts
	Conditional Lower Bound for dual-fault-tolerant (s,t)-mincut

