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Abstract

Let 𝐺 = (𝑉,𝐸) be an undirected unweighted graph on 𝑛 vertices and 𝑚
edges. We address the problem of fault-tolerant data structure for all-pairs
mincuts in 𝐺 defined as follows.

Build a compact data structure that, on receiving a pair of vertices 𝑠, 𝑡 ∈
𝑉 and any edge (𝑥, 𝑦) as query, can efficiently report the value of the mincut
between 𝑠 and 𝑡 upon failure of the edge (𝑥, 𝑦).

To the best of our knowledge, there exists no data structure for this
problem which takes 𝑜(𝑚𝑛) space and a non-trivial query time. We present
two compact data structures for this problem.

1. Our first data structure guarantees 𝒪(1) query time. The space occu-
pied by this data structure is 𝒪(𝑛2) which matches the worst-case size
of a graph on 𝑛 vertices.

2. Our second data structure takes 𝒪(𝑚) space which matches the size of
the graph. The query time is 𝒪(min(𝑚,𝑛𝑐𝑠,𝑡)) where 𝑐𝑠,𝑡 is the value
of the mincut between 𝑠 and 𝑡 in 𝐺. The query time guaranteed by
our data structure is faster by a factor of Ω(

√
𝑛) compared to the best

known algorithm [19, 24] to compute a (𝑠, 𝑡)-mincut.

Both these data structures can also report the resulting (𝑠, 𝑡)-mincut in-
corporating the failure in 𝒪(min(𝑚,𝑛𝑐𝑠,𝑡)) time.
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Chapter 1

Introduction

Graph mincut is a fundamental structure in graph theory with numerous
applications. Let 𝐺 = (𝑉,𝐸) be an undirected unweighted connected graph
on 𝑛 = |𝑉 | vertices and 𝑚 = |𝐸| edges. Two most common types of mincuts
are global mincuts and pairwise mincuts. A set of edges with the least
cardinality whose removal disconnects the graph is called a global mincut.
For any pair of vertices 𝑠, 𝑡 ∈ 𝑉 , a set of edges with the least cardinality
whose removal disconnects 𝑡 from 𝑠 is called a pairwise mincut for 𝑠, 𝑡 or
simply a (𝑠, 𝑡)-mincut. A more general notion is that of Steiner mincuts. For
any given set 𝑆 ⊆ 𝑉 of vertices, a set of edges with the least cardinality
whose removal disconnects 𝑆 is called a Steiner mincut for 𝑆. It is easy to
observe that the Steiner mincuts for 𝑆 = 𝑉 are the global mincuts and for
𝑆 = {𝑠, 𝑡} are (𝑠, 𝑡)-mincuts.

While designing an algorithm for a graph problem, one usually assumes
that the underlying graph is static. But, this assumption is unrealistic for
most of the real-world graphs where vertices and/or edges do fail, though
occasionally. While it is impractical to assume that a real-world graph is
immune to such failures, it is also a fact that these failures are transient -
an edge (or a vertex) once failed, becomes active after some time due to the
simultaneous repair mechanism that is undertaken in most of the real-world
graphs. So the set of failed edges (or vertices), though small in size, keeps
changing with time. Therefore, a more realistic way to model a real-world
graph is to assume that, at any time, there will be at most 𝑘 failed vertices
or edges for some 𝑘 defined suitably. Solving a graph problem in this model
requires building a compact data structure such that given any set of at
most 𝑘 failed vertices or edges, the solution of the problem can be reported
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efficiently.
In the past, many elegant fault-tolerant algorithms have been designed for

various classical problems, namely, connectivity [6, 18, 7, 17], shortest-paths
[4, 11, 8], graph spanners [9, 5], SCC [2] , DFS tree [1], and BFS structure
[26, 27]. However, little is known about fault-tolerant data structures for var-
ious types of mincuts. The problem of fault-tolerant all-pairs mincuts aims
at preprocessing a given graph to build a compact data structure so that the
following query can be answered efficiently for any 𝑠, 𝑡 ∈ 𝑉 and (𝑥, 𝑦) ∈ 𝐸.

ft-mincut(𝑠, 𝑡, 𝑥, 𝑦): Report a (𝑠, 𝑡)-mincut in 𝐺 after the failure of edge
(𝑥, 𝑦).

Upon failure of edge (𝑥, 𝑦), the value of (𝑠, 𝑡)-mincut for any 𝑠, 𝑡 ∈ 𝑉
either decreases by unity or remains unchanged. We now state the necessary
and sufficient condition for the value of (𝑠, 𝑡)-mincut to decrease upon failure
of edge (𝑥, 𝑦).

Fact 1.1. The value of (𝑠, 𝑡)-mincut decreases on failure of an edge (𝑥, 𝑦) if
and only if (𝑥, 𝑦) lies in some (𝑠, 𝑡)-mincut.

It follows from Fact 1.1 that any ft-mincut(𝑠, 𝑡, 𝑥, 𝑦) query can be an-
swered by determining whether (𝑥, 𝑦) belongs to any (𝑠, 𝑡)-mincut. Unfortu-
nately, there can be exponential number of (𝑠, 𝑡)-mincuts in a given graph
[28]. Thus, designing a compact data structure to answer this query effi-
ciently turns out to be a challenging task.

1.1 Previous Results

There exists a classical 𝒪(𝑛) size data structure that stores all-pairs mincuts
[20] known as Gomory-Hu tree. It is a tree on the vertex set 𝑉 that compactly
stores a mincut between each pair of vertices. However, we cannot determine
using a Gomory-Hu tree whether the failure of an edge will affect the (𝑠, 𝑡)-
mincut unless this edge belongs to the (𝑠, 𝑡)-mincut present in the tree. We
can get a fault-tolerant data structure by storing 𝑚 Gomory-Hu trees, one
for each edge failure. The overall data structure occupies 𝒪(𝑚𝑛) space and
takes 𝒪(1) time to report the value of (𝑠, 𝑡)-mincut for any 𝑠, 𝑡 ∈ 𝑉 upon
failure of a given edge. However, the 𝒪(𝑚𝑛) space occupied by this data
structure is far from the size of the graph. To the best of our knowledge,
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there exists no data structure for this problem which takes 𝑜(𝑚𝑛) space and
a non-trivial query time.

1.2 Our Contribution

We present two space efficient fault-tolerant data structures for the all-pairs
mincuts problem in an undirected unweighted graph.

1. Our first data structure occupies 𝒪(𝑛2) space while achieving the opti-
mal 𝒪(1) query time to report the value of (𝑠, 𝑡)-mincut for any 𝑠, 𝑡 ∈ 𝑉
upon failure of any given edge. However, the size of this data structure
is still impractical for large real-world graphs which are usually sparse.
So it is natural to ask whether we can have a more compact data struc-
ture at the expense of increased query time. Our second data structure
answers this question in affirmative.

2. Our second data structure occupies 𝒪(𝑚) space which matches the
space required to store the given graph. The query time to report the
value of (𝑠, 𝑡)-mincut for any 𝑠, 𝑡 ∈ 𝑉 upon failure of any given edge
is 𝒪(min(𝑚,𝑛𝑐𝑠,𝑡)) where 𝑐𝑠,𝑡 is the value of (𝑠, 𝑡)-mincut in graph 𝐺.
The query time guaranteed by our data structure is faster by a factor
of Ω(

√
𝑛) compared to the best known algorithm [19, 24] to compute a

(𝑠, 𝑡)-mincut.

Both these data structures can also report the resulting (𝑠, 𝑡)-mincut incor-
porating the failure in 𝒪(min(𝑚,𝑛𝑐𝑠,𝑡)) time. In order to design our data
structures, we present an efficient solution for a related problem of indepen-
dent interest, called edge-containment query on a mincut defined as follows.

edge-contained(𝑠, 𝑡, 𝐸𝑦): Check if a given set of edges 𝐸𝑦 ⊂ 𝐸 sharing a
common endpoint 𝑦 belong to some (𝑠, 𝑡)-mincut.

Using a data structure for this problem, we can answer a fault-tolerant
query upon failure of edge (𝑥, 𝑦) as follows. We perform the corresponding
edge-containment query for 𝐸𝑦 = {(𝑥, 𝑦)}. The value of (𝑠, 𝑡)-mincut will
reduce by unity if the edge-containment query evaluates to true. We can
keep a Gomory-Hu tree of 𝒪(𝑛) size as an auxiliary data structure to lookup
the old value of 𝑐𝑠,𝑡. Our first data structure can answer edge-containment
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queries for |𝐸𝑦| = 1 in 𝒪(1) time. On the other hand, our second data
structure works for any given set 𝐸𝑦 but takes 𝒪(min(𝑚,𝑛𝑐𝑠,𝑡)) time.

Remark 1.2. It is worthwhile to note that edge-containment queries cannot
be extended to handle more than one edge failure. This is because Fact 1.1
doesn’t hold for multiple edges failures.

1.3 Related Work

A related problem is that of maintaining mincuts in a dynamic environment.
Until recently, most of the work on this problem has been limited to global
mincuts. Thorup [29] gave a Monte-Carlo algorithm for maintaining a global
mincut of polylogarithmic size with �̃�(

√
𝑛) update time. He also showed how

to maintain a global mincut of arbitrary size with 1 + 𝑜(1)-approximation
within the same time-bound. Goranci, Henzinger and Thorup [21] gave a
deterministic incremental algorithm for maintaining a global mincut with
amortized �̃�(1) update time and 𝒪(1) query time. Hartmann and Wagner
[23] designed a fully dynamic algorithm for maintaining all-pairs mincuts
which provided significant speedup in many real-world graphs, however, its
worst-case asymptotic time complexity is not better than the best static
algorithm for an all-pairs mincut tree. Recently, there is a fully-dynamic
algorithm [10] that approximates all-pairs mincuts up to a nearly logarithmic
factor in �̃�(𝑛2/3) amortized time against an oblivious adversary, and �̃�(𝑚3/4)
time against an adaptive adversary. To the best of our knowledge, there exists
no non-trivial dynamic algorithm for all-pairs exact mincut. We feel that our
insights in this paper may be helpful in this problem.

1.4 Overview of our results

Dinitz and Vainshtein [15] presented a novel data structure called connec-
tivity carcass that stores all Steiner mincuts for a given Steiner set 𝑆 ⊆ 𝑉
in 𝒪(min(𝑚,𝑛𝑐𝑆)) space, where 𝑐𝑆 is the value of Steiner mincut. Katz,
Katz, Korman and Peleg [25] presented a data structure of 𝒪(𝑛) size for
labeling scheme of all-pairs mincuts. This structure hierarchically partitions
the vertices based on their connectivity in the form of a rooted tree. In this
tree, each leaf node is a vertex in set 𝑉 and each internal node 𝜈 stores
the Steiner mincut value of the set 𝑆(𝜈) of leaf nodes in the subtree rooted
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at 𝜈. We observe that if each internal node 𝜈 of the hierarchy tree is aug-
mented with the connectivity carcass of 𝑆(𝜈), we get a data structure for
the edge-containment query. This data structure occupies 𝒪(𝑚𝑛) space. An
edge-containment query can be answered using the connectivity carcass at
the Lowest Common Ancestor (LCA) of the given pair of vertices.

As we move down the hierarchy tree, the size of Steiner set associated with
the internal node reduces. So, to make the data structure more compact, a
possible approach is to associate a smaller graph 𝐺𝜈 for each internal node
𝜈 that is small enough to improve the overall space-bound, yet large enough
to retain the internal connectivity of set 𝑆(𝜈). However, such a compact
graph cannot directly answer the edge-containment query as it does not even
contain the information about all edges in 𝐺. A possible way to overcome
this challenge is to transform any edge-containment query in graph 𝐺 to an
equivalent query in graph 𝐺𝜈 . In this paper, we show that not only such
a transformation exists, but it can also be computed efficiently. We model
the query transformation as a multi-step procedure. The following result
captures a single step of this procedure.

Given an undirected graph 𝐺 = (𝑉,𝐸) and a Steiner set 𝑆 ⊆ 𝑉 , let
𝑆 ′ ⊂ 𝑆 be any maximal set with connectivity strictly greater than that of 𝑆.
We can build a quotient graph 𝐺𝑆′ = (𝑉𝑆′ , 𝐸𝑆′) such that 𝑆 ′ ⊂ 𝑉𝑆′ with the
following property.

For any two vertices 𝑠, 𝑡 ∈ 𝑆 ′ and any set of edges 𝐸𝑦 incident on vertex
𝑦 in 𝐺, there exists a set of edges 𝐸𝑦′ incident on a vertex 𝑦′ in 𝐺𝑆′ such
that 𝐸𝑦 lies in a (𝑠, 𝑡)-mincut in 𝐺 if and only if 𝐸𝑦′ lies in a (𝑠, 𝑡)-mincut
in 𝐺𝑆′.

We build graph 𝐺𝜇 associated with each internal node 𝜇 of the hierarchy
tree as follows. For the root node 𝑟, 𝐺𝑟 = 𝐺. For any other internal node
𝜇, we use the above result to build the graph 𝐺𝜇 from 𝐺𝜇′ , where 𝜇′ is the
parent of 𝜇. Our data-structure is the hierarchy tree where each internal
node 𝜇 is augmented with the connectivity carcass for 𝐺𝜇 and the Steiner
set 𝑆(𝜇). A high-level description of our query algorithm is as follows. We
traverse the path from the root node to the LCA of 𝑠 and 𝑡. We keep
transforming the edge-containment query for each edge in this path. At the
LCA of 𝑠 and 𝑡, we stop and perform the query using the connectivity carcass
stored at this node. Following a rigorous analysis, we show that this data
structure takes only 𝒪(𝑚) space and can answer any edge-containment query
in 𝒪(min(𝑚,𝑛𝑐𝑠,𝑡)) time.
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Chapter 2

Preliminaries

Let 𝐺 = (𝑉,𝐸) be an undirected unweighted multigraph without self-loops.
To contract (or compress) a set of vertices 𝑈 ⊆ 𝑉 means to replace all vertices
in 𝑈 by a single vertex 𝑢, delete all edges with both endpoints in 𝑢 and for
every edge which has one endpoint in 𝑈 , replace this endpoint by 𝑢. A graph
obtained by performing a sequence of vertex contractions is called a quotient
graph of 𝐺.

For any given 𝐴,𝐵 ⊂ 𝑉 such that 𝐴 ∩ 𝐵 = ∅, we use 𝑐(𝐴,𝐵) to denote
the number of edges with one endpoint in 𝐴 and another in 𝐵. Overloading
the notation, we shall use 𝑐(𝐴) for 𝑐(𝐴,𝐴).

Definition 2.1 ((𝑠, 𝑡)-cut). A subset of edges whose removal disconnects 𝑡
from 𝑠 is called an (𝑠, 𝑡)-cut. An (𝑠, 𝑡)-mincut is an (𝑠, 𝑡)-cut of minimum
cardinality.

Definition 2.2 (set of vertices defining a cut). A subset 𝐴 ⊂ 𝑉 is said to
define an (𝑠, 𝑡)-cut if 𝑠 ∈ 𝐴 and 𝑡 /∈ 𝐴. The corresponding cut is denoted by
cut(𝐴,𝐴) or more compactly cut(𝐴).

The following lemma exploits the undirectedness of the graph.

Lemma 2.3. Let 𝑥, 𝑦, 𝑧 be any three vertices in 𝐺. If 𝑐𝑥,𝑦 > 𝑐 and 𝑐𝑦,𝑧 > 𝑐,
then 𝑐𝑥,𝑧 > 𝑐 as well.

When there is no scope of confusion, we do not distinguish between a
mincut and the set of vertices defining the mincut. We now state a well-
known property of cuts.
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Lemma 2.4 (Submodularity of cuts). For any two subsets 𝐴,𝐵 ⊂ 𝑉 , 𝑐(𝐴)+
𝑐(𝐵) ≥ 𝑐(𝐴 ∪𝐵) + 𝑐(𝐴 ∩𝐵).

Lemma 2.5. Let 𝑆 ⊂ 𝑉 define an (𝑠, 𝑡)-mincut with 𝑠 ∈ 𝑆. For any subset
𝑆 ′ ⊂ 𝑉 ∖ 𝑆 with 𝑣 /∈ 𝑆 ′,

𝑐(𝑆, 𝑆 ′) ≤ 𝑐(𝑆, 𝑉 ∖ (𝑆 ∪ 𝑆 ′))

2.1 Compact representation for all (𝑠, 𝑡)-mincuts

Dinitz and Vainshtein [15] showed that there exists a quotient graph of 𝐺
that compactly stores all (𝑠, 𝑡)-mincuts. This graph is called strip 𝒟𝑠,𝑡. The
2 node to which 𝑠 and 𝑡 are mapped in 𝒟𝑠,𝑡 are called the terminal nodes,
denoted by s and t respectively. Every other node is called a non-terminal
node. We now elaborate some interesting properties of the strip 𝒟𝑠,𝑡.

Consider any non-terminal node 𝑣, and let 𝐸𝑣 be the set of edges incident
on it in 𝒟𝑠,𝑡. There exists a unique partition, called inherent partition, of
𝐸𝑣 into 2 subsets of equal sizes. These subsets are called the 2 sides of the
inherent partition of 𝐸𝑣. Interestingly, if we traverse 𝒟𝑠,𝑡 such that upon
visiting any non-terminal node using an edge from one side of its inherent
partition, the edge that we traverse while leaving it belong to the other side
of the inherent partition, then no node will be visited again. Such a path is
called a coherent path in 𝒟𝑠,𝑡. Furthermore, if we begin traversal from a non-
terminal node 𝑢 along one side of its inherent partition and keep following a
coherent path we are bound to reach the terminal s or terminal t. So the two
sides of the inherent partitions can be called side-s and side-t respectively.
It is because of these properties that the strip 𝒟𝑠,𝑡 can be viewed as an
undirected analogue of a directed acyclic graph with a single source and a
single sink.

A cut in the strip 𝒟𝑠,𝑡 is said to be a transversal if each coherent path in
𝒟𝑠,𝑡 intersects it at most once. The following lemma provides the key insight
for representing all (𝑠, 𝑡)-mincuts through the strip 𝒟𝑠,𝑡.

Lemma 2.6 ([15]). 𝐴 ⊂ 𝑉 defines a (𝑠, 𝑡)-mincut if and only if 𝐴 is a
transversal in 𝒟𝑠,𝑡.

We now state the following two lemmas that can be viewed as a corollary
of Lemma 2.6.
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Lemma 2.7. A (𝑠, 𝑡)-mincut contains a set of edges 𝐸𝑦 incident on vertex 𝑦
if and only if all edges in 𝐸𝑦 must belong to the same side of the inherent
partition of the node containing 𝑦 in strip 𝒟𝑠,𝑡.

Lemma 2.8. If 𝐴 ⊂ 𝑉 defines a (𝑠, 𝑡)-mincut with 𝑠 ∈ 𝐴, then 𝐴 can be
merged with the terminal node s in 𝒟𝑠,𝑡 to get the strip 𝒟𝐴,𝑡 that stores all
those (𝑠, 𝑡)-mincuts that enclose 𝐴.

Consider any non-terminal node 𝑥. Let ℛ𝑠(𝑥) be the set of all the nodes
𝑦 in 𝒟𝑠,𝑡 that are reachable from 𝑥 through coherent paths that originate
from the side-s of the inherent partition of 𝑥 – notice that all these paths
will terminate at s. It follows from the construction that ℛ𝑠(𝑥) defines a
transversal in 𝒟𝑠,𝑡. We call ℛ𝑠(𝑥) the reachability cone of 𝑥 towards 𝑠.
The (𝑠, 𝑡)-mincut defined by ℛ𝑠(𝑥) is the nearest mincut from {𝑠, 𝑥} to 𝑡.
Interestingly, each transversal in 𝒟𝑠,𝑡, and hence each (𝑠, 𝑡)-mincut, is a union
of the reachability cones of a subset of nodes of 𝒟𝑠,𝑡 in the direction of 𝑠. We
now state the following Lemma that we shall crucially use.

Lemma 2.9 ([15]). If 𝑥1, . . . , 𝑥𝑘 are any non-terminal nodes in strip 𝒟𝑠,𝑡, the
union of the reachability cones of 𝑥𝑖’s in the direction of s defines the nearest
mincut between {𝑠, 𝑥1, . . . , 𝑥𝑘} and 𝑡.

2.2 Compact representation for all global min-
cuts

Let 𝑐𝑉 denote the value of the global mincut of the graph 𝐺. Dinitz,
Karzanov, and Lomonosov [12] showed that there exists a graph ℋ𝑉 of size
𝑂(𝑛) that compactly stores all global mincuts of 𝐺. Henceforth, we shall use
nodes and structural edges for vertices and edges of ℋ𝑉 respectively. There
exists a projection mapping 𝜋 : 𝑉 (𝐺)→ 𝑉 (ℋ𝑉 ) assigning a vertex of graph
𝐺 to a node in graph ℋ𝑉 . In this way, any cut (𝐴,𝐴) in cactus ℋ𝑉 is asso-
ciated to a cut (𝜋−1(𝐴), 𝜋−1(𝐴)) in the original graph 𝐺. The graph ℋ𝑉 has
a nice tree-like structure with the following properties.

1. Any two distinct simple cycle of ℋ𝑉 have at most a node in common.
This is equivalent to the property that each structural edge of ℋ𝑉

belongs to at most one simple cycle. Each cut in ℋ𝑉 either corresponds
to a tree edge or a pair of cycle edges in the same cycle.
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2. If a stuctural edge belongs to a simple cycle, it is called a cycle edge
and its weight is 𝑐𝑉

2
. Otherwise, the structural edge is called a tree edge

and its weight is 𝑐𝑉 .

3. For any cut in the cactus ℋ𝑉 , the associated cut in graph 𝐺 is a global
mincut. Moreover, any global mincut in 𝐺 must have at least one
associated cut in ℋ𝑉 .

Let 𝜈 and 𝜇 be any two nodes in the cactusℋ𝑉 . If they belong to the same
cycle, say 𝑐, there are two paths between them on the cycle 𝑐 itself - their
union forms the cycle itself. Using the fact that any two cycles in ℋ𝑉 can
have at most one common node, it can be seen that these are the only paths
between 𝜈 and 𝜇. Using the same fact, if 𝜈 and 𝜇 are two arbitrary nodes in
the cactus, there exists a unique path of cycles and tree edges between these
two nodes. Any global mincut that separates 𝜈 from 𝜇 must correspond to
a cut in this path.

2.2.1 Construction of (𝑠, 𝑡)-strip from cactus

Suppose 𝑠, 𝑡 ∈ 𝑉 are two vertices such that 𝑐𝑠,𝑡 is same as the global mincut
value. So, each transversal of strip 𝒟𝑠,𝑡 corresponds to a global mincut that
separates 𝑠 and 𝑡. Recall that cactus ℋ𝑉 stores all global mincuts. So we
just need to contract it suitably so that only those cuts remain that separate
𝑠 and 𝑡. For this purpose, we compute the path of cycles and tree edges
between the nodes corresponding to 𝑠 and 𝑡 respectively. We compress each
of the subcactus rooted to this path to a single vertex. The resultant graph
we obtain will be the strip 𝒟𝑠,𝑡. The inherent partition of all the non-terminal
units can be determined using the endpoints of the edges in the path.

2.2.2 Tree representation for cactus

We shall now show that ℋ𝑉 can be represented as a tree structure. This tree
structure was also used by Dinitz and Westbrook in [16]. This representation
will simplify our analysis on the cactus.

We now provide the details of the graph structure 𝑇 (ℋ𝑉 ) that represents
ℋ𝑉 . The vertex set of 𝑇 (ℋ𝑉 ) consists of all the cycles and the nodes of the
cactus. For any node 𝜈 of the cactus ℋ𝑉 , let 𝑣(𝜈) denote the corresponding
vertex in 𝑇 (ℋ𝑉 ). Likewise, for any cycle 𝜋 in the cactus, let 𝑣(𝜋) denote the
corresponding vertex in 𝑇 (ℋ𝑉 ). We now describe the edges of 𝑇 (ℋ𝑉 ). Let 𝜈
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Figure 2.1: Transformation of cactus ℋ𝑉 to the tree 𝑇 (ℋ𝑉 ).

be any node of ℋ𝑉 . Suppose there are 𝑗 cycles - 𝜋1, . . . , 𝜋𝑗 that pass through
it. We add an edge between 𝑣(𝜈) and 𝑣(𝜋𝑖) for each 1 ≤ 𝑖 ≤ 𝑗. Lastly, for
each vertex 𝜈(𝜋) in 𝑇 (ℋ𝑉 ) we store all its neighbours in the order in which
they appear in the cycle 𝜋 in ℋ𝑉 . This is done to ensure that information
about the order of vertices in each cycle is retained. This complete the
description of 𝑇 (ℋ𝑉 ). For a better understanding, the reader may refer to
Figure 2.1 that succinctly depicts the transformation carried out at a node
𝜈 of the cactus graph to build the corresponding graph structure 𝑇 (ℋ𝑉 ).

The fact that the graph structure 𝑇 (ℋ𝑉 ) is a tree follows from the prop-
erty that any two cycles in a cactus may have at most one vertex in common.
Let us root 𝑇 (ℋ𝑉 ) at any arbitrary vertex, say 𝑣(𝜈), for some node 𝜈 of ℋ𝑉 .
Since each cycle in ℋ𝑉 has at least 3 vertices, so each vertex corresponding
to a cycle of ℋ𝑉 will have at least 2 children each corresponding to distinct
nodes of ℋ𝑉 . This also shows that the number of cycles in ℋ𝑉 is at most
half of the number of nodes in ℋ𝑉 . Hence, the size of 𝑇 (ℋ𝑉 ) is of the order
of the number of nodes of ℋ𝑉 .

We know that if 𝜈 and 𝜇 are two nodes in the cactus, there exists a unique
path of cycles and tree edges between them. It follows from the construction
of 𝑇 (ℋ𝑉 ) that the unique path between the vertices 𝑣(𝜈) and 𝑣(𝜇) captures
the same path. Thus we state the following lemma.

Lemma 2.10. Let 𝜈, 𝜇 be any two arbitrary nodes in the cactus ℋ𝑉 . The
unique path between 𝑣(𝜈) and 𝑣(𝜇) in 𝑇 (ℋ𝑉 ) concisely captures all paths
between 𝜈 and 𝜇 in ℋ𝑆.

We root the tree 𝑇 (ℋ𝑉 ) at any arbitrary vertex and augment it suitably
so that it can answer any LCA query in 𝒪(1) time using [3]. Henceforth, we
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shall use skeleton tree 𝑇 (ℋ𝑆) to denote this data structure.

2.3 Compact representation for all Steiner min-
cuts

Dinitz and Vainshtein [13] designed a data structure C𝑆 = (ℱ𝑆,ℋ𝑆, 𝜋𝑆) that
stores all the Steiner mincuts for a Steiner set 𝑆 ⊆ 𝑉 in the graph. We
present a summary of this data structure.

This data structure can be seen as a generalization of two already dis-
cussed data structures, (i) strip 𝒟𝑠,𝑡 storing all (𝑠, 𝑡)-mincuts, and (ii) cactus
graph ℋ𝑉 storing all global mincuts.

Two 𝑆-mincuts are said to be equivalent if they divide the Steiner set 𝑆 in
the same way. The equivalence classes thus formed are known as the bunches.
Similarly, two vertices are said to be equivalent if they are not separated by
any Steiner mincut. The equivalence classes thus formed are known as units.
A unit is called a Steiner unit if it contains at least a Steiner vertex.

Let (𝑆𝐵, 𝑆𝐵) be the 2−partition of Steiner set induced by a bunch ℬ. If
we compress all vertices in 𝑆𝐵 to 𝑠 and all vertices in 𝑆𝐵 to 𝑡, the strip 𝒟𝑠,𝑡

will store all cuts in ℬ. We shall denote this strip by 𝒟ℬ. Any such strip has
the following property – if two non-terminals nodes of two strips intersect
at even one vertex then these nodes coincide and the inherent partitions of
these nodes in both strips coincide as well.

The first component of the connectivity carcass is the flesh graph ℱ𝑆

which is a generalization of the strip. This graph is a quotient graph of
graph 𝐺. The vertices of ℱ𝑆 can be obtained by contracting each unit of 𝐺
to a single vertex. Thus, we denote the vertices of ℱ𝑆 simply by units. In
addition to it, each unit of ℱ𝑆 is assigned a 2−partition known as the inherent
partition on the set of edges incident on it. Any unit that appears as a non-
terminal in the strip corresponding to some bunch is called a stretched unit.
Otherwise, it is called a terminal unit. The inherent partition assigned to a
stretched unit consists of two sets of equal cardinality. On the other hand,
inherent partition assigned to a terminal unit is a trivial partition (one of
the set is empty). Note that all Steiner units are terminal units but the
reverse is not true. The concept of reachability in ℱ𝑆 is similar to the strip.
Whenever we say that a unit 𝑢 is reachable from unit 𝑢′, it means that there
exists a coherent path between 𝑢 and 𝑢′. The structure of ℱ𝑆 is such that a
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coherent path cannot start and finish at a single unit and hence, ℱ𝑆 is in a
sense acyclic. There is a one-to-one correspondence between transversals in
ℱ𝑆 and Steiner mincuts in 𝐺.

The second component of the connectivity carcass, skeleton ℋ𝑆, is a cac-
tus graph. To avoid confusion with the original graph, the vertices and edges
of the skeleton will be referred to as nodes and structural edges respectively.
Each terminal unit of ℱ𝑆 is mapped to a node in the skeleton ℋ𝑆 by pro-
jection mapping 𝜋𝑆. A stretched unit on the other hand is mapped to a
set of edges corresponding to a proper path in ℋ𝑆 by 𝜋𝑆. A proper path in
the skeleton refers to an alternating sequence of nodes and structural edges
(𝜈1, 𝜖1, 𝜈2, ..., 𝜈𝑘) such that 𝜖𝑖 is incident on 𝜈𝑖−1 and 𝜈𝑖 and it intersects each
cycle of the skeleton at at most one structural edge. All the bunches can
be stored in a skeleton ℋ𝑆 in the form of subbunches (disjoint subsets of
a bunch). Each cut in skeleton corresponds to a subbunch. The strip 𝒟ℬ
corresponding to this subbunch ℬ can be obtained as follows. Let the cut in
the skeleton separates it into two subcactuses ℋ𝑆(ℬ) and ℋ̄𝑆(ℬ). If 𝑃 (𝜈1, 𝜈2)
be the path in the skeleton to which a unit 𝑢 is mapped, it will be placed in
𝒟ℬ as follows.

• If both 𝜈1 and 𝜈2 lie in ℋ𝑆(ℬ) (or ℋ̄𝑆(ℬ)) 𝑢 is contracted in source (or
sink).

• Otherwise, 𝑢 is kept as a non-terminal unit.

Now we discuss an important property between the reachability of a
stretched unit 𝑢 and the proper path to which it is mapped in the skele-
ton ℋ𝑆.

Lemma 2.11 ([14]). Let 𝑢 be a stretched unit and 𝑢′ be any arbitrary unit in
the flesh ℱ𝑆 and 𝜋𝑆(𝑢) = 𝑃 (𝜈1, 𝜈2), 𝜋𝑆(𝑢′) = 𝑃 (𝜈3, 𝜈4). If 𝑢′ is reachable from
𝑢 in direction 𝜈2, then both these paths are extendable to a larger proper
path with 𝑃 (𝜈1, 𝜈2) as the initial part and 𝑃 (𝜈3, 𝜈4) as the final part.

Lemma 2.12 ([13]). Let 𝑠, 𝑡 ∈ 𝑆 such that 𝑐𝑠,𝑡 = 𝑐𝑆. Given the connectivity
carcass C𝑆 storing all Steiner mincuts, the strip 𝒟𝑠,𝑡 can be constructed in
time linear in the size of flesh graph.

The size of flesh ℱ𝑆 is 𝒪(min(𝑚, �̃�𝑐𝑆)) where �̃� is the number of units
in ℱ𝑆. The size taken by skeleton is linear in the number of Steiner units.
Thus, overall space taken by the connectivity carcass is 𝒪(min(𝑚, �̃�𝑐𝑆)).
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Chapter 3

Insights Into 3-vertex mincuts

The main result of this section is the following theorem.

Theorem 3.1. Let 𝑠, 𝑟, 𝑡 ∈ 𝑉 be any 3 vertices such that 𝑐𝑠,𝑟 ≥ 𝑐𝑠,𝑡. Let
𝐴 ⊂ 𝑉 define a (𝑠, 𝑡)-mincut with 𝑠, 𝑟 ∈ 𝐴 and 𝑡 ∈ 𝐴. For any subset 𝐸𝑦 of
edges incident on any vertex 𝑦 ∈ 𝐴, there exists a subset 𝐸𝐴 of edges from
the mincut defined by 𝐴 such that the following assertion holds.

There is a (𝑟, 𝑠)-mincut containing 𝐸𝑦 if and only if there is a (𝑟, 𝑠)-mincut
containing 𝐸𝐴.

In order to prove the theorem stated above, we first prove the following
lemma.

Lemma 3.2 (3-vertex Lemma). Let 𝑠, 𝑟, 𝑡 ∈ 𝑉 be any three vertices and
𝑐𝑟,𝑠 ≥ 𝑐𝑠,𝑡. Let 𝐴 ⊂ 𝑉 define an (𝑠, 𝑡)-mincut as well as an (𝑟, 𝑡)-mincut with
𝑟, 𝑠 ∈ 𝐴 and 𝑡 /∈ 𝐴. Let 𝐵 ⊂ 𝑉 define a (𝑟, 𝑠)-mincut with 𝑟 ∈ 𝐵. Without
loss of generality, assume 𝑡 ∈ 𝐴 ∩ �̄�, then the following assertions hold:

1. 𝑐(𝐴 ∩𝐵,𝐴 ∩ �̄�) = 0

2. 𝐴 ∩𝐵 defines a (𝑟, 𝑠)-mincut.

3. 𝐴 ∩ �̄� defines a (𝑠, 𝑡)-mincut as well as a (𝑟, 𝑡)-mincut.

For a better illustration refer to Figure 3.1(𝑖𝑖)

Proof. Let 𝛼 = 𝑐(𝐴∩𝐵,𝐴∩𝐵), 𝛽 = 𝑐(𝐴∩𝐵,𝐴∩ �̄�), 𝛾 = 𝑐(𝐴∩𝐵,𝐴∩ �̄�).
Refer to Figure 3.1 (i) that illustrates these edges and the respective cuts.
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𝑟 𝑠

𝑡

𝑟 𝑠

𝑡

ҧ𝐴 ∩ ത𝐵

𝐴 ∩ ത𝐵𝐴 ∩ 𝐵

ҧ𝐴 ∩ 𝐵

(𝑖) (𝑖𝑖)

ҧ𝐴 ∩ ത𝐵

𝐴 ∩ ത𝐵𝐴 ∩ 𝐵

ҧ𝐴 ∩ 𝐵

𝛼 𝛽

𝛾

Figure 3.1: (i) 𝛼, 𝛽 and 𝛾 denote the capacities of edges incident on 𝐴 ∩ 𝐵
from 𝐴∩𝐵, 𝐴∩ �̄�, and 𝐴∩ �̄� respectively. (ii) There are no edges along the
diagonal between 𝐴 ∩𝐵 and 𝐴 ∩ �̄�.

Applying Lemma 2.5 on (𝑠, 𝑡)-mincut with 𝑆 = 𝐴 and 𝑆 ′ = 𝐴 ∩ 𝐵, we
get

𝛼 + 𝛽 ≤ 𝛾 (3.1)

Applying Lemma 2.5 on (𝑟, 𝑠)-mincut with 𝑆 = �̄� and 𝑆 ′ = 𝐴 ∩ 𝐵, we get
𝛾 + 𝛽 ≤ 𝛼. This inequality combined with Inequality 3.1 implies that 𝛽 = 0.
That is, 𝑐(𝐴 ∩ 𝐵,𝐴 ∩ �̄�) = 0. This completes the proof of Assertion (1).
Refer to Figure 3.1 (ii) for an illustration. It follows from (1) that 𝛼 = 𝛾.
That is, 𝐴 ∩𝐵 has equal number edges incident from 𝐴 ∩ �̄� as from 𝐴 ∩𝐵.
This fact can be easily used to infer Assertions (2) and (3) by removing 𝐴∩𝐵
from 𝐵 and 𝐴 respectively.

We shall now establish the proof of Theorem 3.1. Suppose 𝐵 is any
(𝑟, 𝑠)-mincut containing edges 𝐸𝑦. Without loss of generality, assume that
𝑟 ∈ 𝐵 and 𝑠, 𝑡 /∈ 𝐵. The following lemma states a crucial property of the cut
defined by 𝐴 ∪ 𝐵 in strip 𝒟𝐴,𝑡, where s and t correspond to source 𝐴 and
sink 𝑡 respectively.

Lemma 3.3. 𝐴 ∪ 𝐵 will be a transversal in strip 𝒟𝐴,𝑡, and all edges in 𝐸𝑦

are present in this cut.

Proof. It follows from Lemma 3.2(3) that 𝐴∪𝐵 will be a (𝑠, 𝑡)-mincut. Hence
𝐴 ∪ 𝐵 will be a transversal in strip 𝒟𝐴,𝑡 that stores all (𝑠, 𝑡)-mincuts. From
definition, 𝑦 belongs to 𝐴. Refer to Figure 3.1(𝑖𝑖). If 𝑦 ∈ 𝐴 ∩ 𝐵, then it
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follows from Lemma 3.2(1) that all neighbors of 𝑦 corresponding to 𝐸𝑦 will
belong to 𝐴∩ �̄�. So 𝐸𝑦 belongs to the cut defined by 𝐴∪𝐵. The same holds
for the case 𝑦 ∈ 𝐴 ∩ �̄� as well since 𝐵 ⊂ 𝐴 ∪𝐵.

It follows from Lemmas 3.3 and 2.7 that all edges in 𝐸𝑦 must belong to
the same side of the inherent partition of the node containing 𝑦 in strip 𝒟𝐴,𝑡.
Otherwise, there is no (𝑟, 𝑠)-mincut which contains set of edges 𝐸𝑦. In this
case, we can choose 𝐸𝐴 = 𝐸(𝐴,𝐴) and Theorem 3.1 trivially holds.

Let 𝑥1, . . . , 𝑥𝑘 be the neighbors of 𝑦 defining 𝐸𝑦; that is, 𝐸𝑦 = {(𝑦, 𝑥𝑖)|∀𝑖 ∈
[𝑘]}. If all edges in 𝐸𝑦 lie in side-s, 𝑅 =

⋃︀𝑘
𝑖=1ℛ𝑠(𝑥𝑖) ∖ {s}, that is, the union

of the reachability cones of 𝑥𝑖’s in the strip 𝒟𝐴,𝑡 towards s excluding the
terminal s. If all edges in 𝐸𝑦 lie in side-t, 𝑅 = ℛ𝑠(𝑦) ∖ {s}. We define 𝐸𝐴

to be the set of edges which are incident from 𝑅 to terminal s as well as the
those edges in 𝐸𝑦 having one endpoint in set 𝐴. Notice that all edges in set
𝐸𝐴 belong to the cut defined by 𝐴. The following lemma suffices to establish
Theorem 3.1.

Lemma 3.4. There is a (𝑟, 𝑠)-mincut containing edges 𝐸𝑦 if and only if there
is a (𝑟, 𝑠)-mincut containing all edges in set 𝐸𝐴.

Proof. 𝒟𝐴,𝑡 stores all (𝑠, 𝑡)-mincuts that enclose the set 𝐴 (see Lemma 2.8),
and thus the mincut defined by 𝐴∪𝐵 as well. So all nodes of the strip 𝒟𝐴,𝑡,
excluding the terminal node s must remain intact in the cut defined by 𝐵.
Therefore, if we replace the subgraph of 𝐺 induced by 𝐴 by the strip 𝒟𝐴,𝑡

lying above s, the resulting graph, denoted by 𝐺𝐴, will preserve all (𝑟, 𝑠)-
mincuts of graph 𝐺. So in the remaining part of this proof, we focus on 𝐺𝐴

instead of 𝐺. Let us consider the case when 𝐸𝑦 is on side-s. The proof for
the other case will follow likewise.

Let 𝐵 be a (𝑟, 𝑠)-mincut containing edges {(𝑦, 𝑥1), . . . , (𝑦, 𝑥𝑘)}. Refer to
Figure 3.2(𝑖𝑖) that demonstrates 𝐴 and 𝐵 in the graph 𝐺𝐴. Observe that 𝑦
does not belong to 𝐴, so {𝑥1, . . . , 𝑥𝑘} ⊂ 𝐴 ∪𝐵. Since 𝐴 ∪𝐵 is a transversal
in 𝒟𝐴,𝑡, so 𝑅 ⊂ 𝐴 ∪ 𝐵. It follows from the construction that 𝑅 lies totally
outside 𝐴, therefore, 𝑅 must lie fully inside 𝐴 ∩ 𝐵. Using this fact and
Lemma 3.2 (1), all edges emanating from 𝑅 on the side of s are incident only
on 𝐴 ∩𝐵. But 𝐴 ∩𝐵 defines a (𝑟, 𝑠)-mincut as follows from Lemma 3.2 (2).
Furthermore, the cut defined by 𝐴∩𝐵 also contains all edges in 𝐸𝑦 that have
one endpoint in 𝐴. Thus, 𝐴 ∩𝐵 is the desired (𝑟, 𝑠)-cut since it contains all
edges in 𝐸𝐴.
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(𝑖) (𝑖𝑖) (𝑖𝑖𝑖)

Figure 3.2: (𝑖) There are no edges along the diagonal between 𝐴 ∩ 𝐵 and
𝐴∩ �̄�. (𝑖𝑖) 𝐵 cuts edges {(𝑦, 𝑥1), . . . , (𝑦, 𝑥𝑘)}. (𝑖𝑖𝑖) 𝐵 cuts all outgoing edges
of 𝑅.

Let 𝐵 be a (𝑟, 𝑠)-mincut that cuts all edges in set 𝐸𝐴. Refer to Figure
3.2(𝑖𝑖𝑖). By construction 𝑅 lies outside 𝐴 and all edges in 𝐸𝑦 with one
endpoint in 𝐴 are contained in the cut defined by 𝐴∪𝐵. Therefore, the cut
defined by 𝐴 ∪ 𝐵 cuts all edges in 𝐸𝐴. Since 𝐴 ∪ 𝐵 is a transversal in 𝒟𝐴,𝑡,
it follows that (𝐴∪𝐵)∩𝑅 = ∅; otherwise it would imply a coherent path in
strip 𝒟𝐴,𝑡 that intersects 𝐴 ∪ 𝐵 twice – a contradiction. So 𝐵 ∩ 𝑅 = ∅ too.
That is, 𝑅 lies entirely on the side of 𝑡 in the cut defined by 𝐵. Treating 𝑅
as a single vertex, observe that its incoming edges are the same in number
as its outgoing edges in 𝒟𝐴,𝑡. It is given that 𝑅 currently contributes all its
outgoing edges to the cut defined by 𝐵. So it follows that 𝐵 ∪𝑅, which also
defines a (𝑟, 𝑠)-cut, has the same capacity as 𝐵, but 𝑅 now contributes all
incoming edges to this cut. So 𝐵 ∪ 𝑅 is the desired (𝑟, 𝑠)-mincut containing
edges (𝑦, 𝑥1), . . . , (𝑦, 𝑥𝑘).

The following corollary follows from the construction in Proof of Lemma
3.4.

Corollary 3.4.1. Given a (𝑟, 𝑠)-mincut that contains all edges in 𝐸𝐴 another
(𝑟, 𝑠)-mincut can be constructed that contains all edges in 𝐸𝑦.
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Chapter 4

Compact Graph for Query
Transformation

Let 𝑆 ⊆ 𝑉 be the Steiner set of vertices. Suppose 𝑆 ′ ⊂ 𝑆 be any maximal
subset of vertices with connectivity greater than that of 𝑆. Observe that the
entire set 𝑆 ′ will be mapped to a single node, say 𝜈, in the skeletonℋ𝑆. In this
section, we present the construction of a compact graph 𝐺𝑆′ such that any
query edge-contained(𝑠, 𝑟, 𝐸𝑦) in graph 𝐺 can be efficiently transformed
to a query edge-contained(𝑠, 𝑟, 𝐸𝑦′) in graph 𝐺𝑆′ for any 𝑠, 𝑟 ∈ 𝑆 ′.

4.1 Construction of Compact Graph 𝐺𝑆′

The construction of 𝐺𝑆′ from the graph 𝐺, flesh ℱ𝑆 and skeleton ℋ𝑆 is a
2−step process. In the 1st step, we contract the subcactuses neighbouring
to node 𝜈 using the following procedure.

Contract-Subcactuses: For each tree-edge incident on 𝜈 (or cycle 𝑐
passing through 𝜈) in skeleton ℋ𝑆, remove the tree-edge (or the pair of edges
from 𝑐 incident on 𝜈) to get 2 subcactuses. Compress all the terminal units
of ℱ𝑆 that belong to the subcactus not containing 𝜈 into a single vertex.
Moreover, compress all the stretched units with both endpoints within this
subcactus into the same vertex.

In the quotient graph obtained after 1st step, each contracted subcactus
defines a Steiner mincut. However, this graph may not necessarily be com-
pact since there may be many stretched units that are not yet compressed.
Let 𝑢 be any such unit and suppose the path to which it is mapped in the
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𝜈

𝐺

𝐺𝑆′

Figure 4.1: 2-step contraction procedure to construct 𝐺𝑆′ . We only show
the vertices and relevant edges of graph along with the skeleton ℋ𝑆. Solid
vertices belong to Steiner set 𝑆 and hollow vertices are non-Steiner vertices.
All Steiner vertices inside node 𝜈 form the set 𝑆 ′.

skeleton is 𝑃 (𝜈1, 𝜈2). If one of 𝜈1 or 𝜈2 is 𝜈, we can compress the stretched
unit to the contracted vertex corresponding to the other endpoint. To handle
the case when the subcactuses containing 𝜈1 and 𝜈2 are compressed to dif-
ferent vertices, we define a total ordering on the set containing all tree-edges
and cycles in the skeleton. The 2nd step uses this ordering to compress the
stretched units as follows.

Contract-Stretched-Units: A stretched unit mapped to path 𝑃 (𝜈1, 𝜈2),
where 𝜈1 ̸= 𝜈 ̸= 𝜈2, is compressed to the contracted subcactus correspond-
ing to lesser ordered cycle/tree-edge in which endpoints lie. If one of 𝜈1 or
𝜈2 is 𝜈, we compress it to the contracted subcactus corresponding to the
cycle/tree-edge where other endpoint lies.

Figure 4.1 gives a nice illustration of the contraction procedure.
Let 𝑐 be any cycle (or tree edge) passing through (incident on) 𝜈 in the

skeleton ℋ𝑆. Let 𝒟𝑠,𝑡 be the strip corresponding to the sub-bunch defined by
the structural edge(s) incident on 𝜈 by 𝑐. Let 𝜈 be on the side of the source s
in this strip. Let ℋ𝑆(𝑐) be the subcactus formed by removing the structural
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edge(s) from 𝑐 incident on 𝜈 and not containing 𝜈. Recall that the subcactus
ℋ𝑆(𝑐) was contracted into a vertex, say 𝑣𝑐, in the graph 𝐺𝑆′ .

Lemma 4.1. Let 𝑢 and 𝑢′ be any two non-terminal units in 𝒟𝑠,𝑡 such that
none of them is compressed to 𝑣𝑐 in 𝐺𝑆′ . If one of them is reachable from
the other in the direction of s, then both of them will be compressed to the
same contracted vertex in 𝐺𝑆′ .

Proof. Assume without loss of generality that 𝑢′ is reachable from 𝑢 in the
direction of s. Let the proper paths associated with each of 𝑢 and 𝑢′ in ℋ𝑆

be 𝑃 (𝜈1, 𝜈2) and 𝑃 (𝜈 ′
1, 𝜈

′
2) respectively. It follows from the construction of

𝒟𝑠,𝑡 that 𝑃 (𝜈1, 𝜈2) as well as 𝑃 (𝜈 ′
1, 𝜈

′
2) will pass through one of the structural

edge(s) from 𝑐 on 𝜈. Without loss of generality, assume that 𝑃 (𝜈1, 𝜈2) passes
through 𝑒. Since 𝑃 (𝜈1, 𝜈2) is a proper path, this implies that this is the only
structural edge in this cut (of skeleton) through which this path passes. Since
𝑢′ is reachable from 𝑢 in flesh ℱ𝑆, so 𝑃 (𝜈 ′

1, 𝜈
′
2) will also have to pass through

𝑒 (from Lemma 2.11). It again follows from Lemma 2.11, that 𝑃 (𝜈1, 𝜈2)
as well as 𝑃 (𝜈 ′

1, 𝜈
′
2) are subpaths of a path, say 𝑃 (𝜈 ′, 𝜈 ′′), in skeleton ℋ𝑆.

This combined with the above discussion establishes that 𝑃 (𝜈 ′, 𝜈 ′′) has the
structure shown in Figure 4.2.

Observe that any path in skeleton that passes through a node 𝜈 can
intersect at most 2 cycles or tree-edges that are passing though 𝜈. We know
that suffix of 𝑃 (𝜈 ′, 𝜈 ′′) after 𝑒 lies in ℋ𝑆(𝑐), so the prefix upto 𝑒 must have
endpoint in subcactus ℋ𝑆(𝑐′) where 𝑐′ ̸= 𝑐. This implies that 𝑢 must be
compressed to 𝑣𝑐′ because it is not compressed to 𝑣𝑐. Thus, 𝑐′ precedes 𝑐 in
total order. It follows from the structure of path 𝑃 (𝜈 ′

1, 𝜈
′
2) that it will have

an endpoint in ℋ𝑆(𝑐′). Thus, 𝑢′ will be compressed to the same compressed
vertex 𝑣𝑐′ in 𝐺𝑆′ . This completes the proof.

Consider the set of non-terminals in the strip 𝒟𝑠,𝑡 that are not compressed
to contracted vertex 𝑣𝑐. Let this set be 𝑈 . Observe that the set of units⋃︀

𝑢∈𝑈 ℛ𝑠(𝑢) form a Steiner mincut (using Lemma 2.9). Moreover, it follows
from Lemma 4.1 that each non-terminal unit in the set

⋃︀
𝑢∈𝑈 ℛ𝑠(𝑢) is not

compressed to contracted vertex 𝑣𝑐. Thus, 𝑈 =
⋃︀

𝑢∈𝑈 ℛ𝑠(𝑢) ∖ {s}. All the
set of vertices compressed to 𝑣𝑐 forms the complement of set

⋃︀
𝑢∈𝑈 ℛ𝑠(𝑢),

and thus defines the same Steiner mincut. Therefore, the set of vertices
corresponding to each contracted vertex defines a Steiner mincut.

22



𝑢𝑢′

𝜈1′(𝜈′) 𝜈1 𝜈2′ 𝜈2(𝜈′′)ⅇ

ℱ𝑆

Figure 4.2: The structure of path 𝑃 (𝜈 ′, 𝜈 ′′).

It follows from the construction that 𝐺𝑆′ is a quotient graph of 𝐺. More-
over, the number of contracted vertices equals the number of cycles and tree
edges incident on node 𝜈 in the skeleton. We state the following lemma.

Lemma 4.2. Let 𝑆 ′ ⊂ 𝑆 be a maximal subset of vertices such that 𝑐𝑆′ > 𝑐𝑆
and 𝜈 be the node in ℋ𝑆 corresponding to 𝑆 ′. Let 𝐺𝑆′ be the graph obtained
after 2-step contraction procedure.

1. The set of vertices compressed to a contracted vertex defines a Steiner
mincut for set 𝑆.

2. The number of contracted vertices equals the number of cycles and tree
edges incident on node 𝜈 in ℋ𝑆.

4.2 Query transformation in 𝐺𝑆′

We begin with a lemma that was used by Gomory and Hu to build a tree
storing all-pairs mincuts.

Lemma 4.3 (Gomory and Hu [20]). Let 𝐴 defines a (𝑠, 𝑡)-mincut with 𝑠 ∈ 𝐴.
Let 𝑟 ∈ 𝐴 be any vertex. For any (𝑠, 𝑟)-mincut, say defined by 𝐵, there
exists a (𝑠, 𝑟)-mincut that keeps 𝐴 intact and still contains all edges in cut
defined by 𝐵 that don’t have both endpoints in 𝐴.

Consider any two vertices 𝑠, 𝑟 ∈ 𝑆 ′. Recall that 𝑆 ′ is mapped to 𝜈 in
the skeleton ℋ𝑆. Let 𝐴 be the subset of vertices compressed to a contracted
vertex in 𝐺𝑆′ . Notice that all those (𝑠, 𝑟)-mincuts in 𝐺 that keep 𝐴 intact
remain preserved in 𝐺𝑆′ . Moreover, it follows from Lemma 4.2 and Lemma
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4.3 that there is at least one such (𝑠, 𝑟)-mincut. So it suffices to work with
graph 𝐺𝑆′ if one wishes to calculate the value of (𝑠, 𝑟)-mincut in 𝐺 or simply
report a (𝑠, 𝑟)-mincut in 𝐺 for any 𝑠, 𝑟 ∈ 𝑆. Moreover, we can answer a
query edge-contained(𝑠, 𝑟, 𝐸𝑦) using 𝐺𝑆′ if all edges in 𝐸𝑦 remain intact
in graph 𝐺𝑆′ . However, answering a query edge-contained(𝑠, 𝑟, 𝐸𝑦) for
any arbitrary 𝐸𝑦 using 𝐺𝑆′ is still challenging. This is because 𝐺𝑆′ may not
even preserve all (𝑠, 𝑟)-mincuts. In particular, all those (𝑠, 𝑟)-mincuts that
cut the set associated with a contracted vertex in 𝐺𝑆′ get lost during the
transformation from 𝐺 to 𝐺𝑆′ . We shall now establish a mapping from the
set of all such lost (𝑠, 𝑟)-mincuts to the set of (𝑠, 𝑟)-mincuts that are present
in 𝐺𝑆′ .

Let 𝑦 belong to 𝐴. It follows from Lemma 4.2 that the cut (𝐴,𝐴) is
a (𝑠, 𝑡)-mincut for any 𝑡 ∈ 𝑆 ∩ 𝐴. Hence, 𝐴, 𝑠, 𝑡, 𝑟 satisfy all conditions of
Theorem 3.1. Now notice that entire 𝐴 is compressed to a single vertex, say
𝑦′, in 𝐺𝑆′ . Hence we can state the following Theorem.

Theorem 4.4. Given an undirected graph 𝐺 = (𝑉,𝐸), a subset 𝑆 ⊆ 𝑉 , let
𝑆 ′ ⊂ 𝑆 be a maximal subset of vertices such that 𝑐𝑆′ > 𝑐𝑆. There exists
a quotient graph 𝐺𝑆′ with the following property. For any two vertices
𝑟, 𝑠 ∈ 𝑆 ′ and a set of edges 𝐸𝑦 incident on vertex 𝑦 in 𝐺, there exists a set of
edges 𝐸𝑦′ incident on a vertex 𝑦′ in 𝐺𝑆′ such that 𝐸𝑦 lies in a (𝑟, 𝑠)-mincut
in 𝐺 if and only if 𝐸𝑦′ lies in a (𝑟, 𝑠)-mincut in 𝐺𝑆′ .

We have already seen the construction of 𝐺𝑆′ . In order to transform
edge-contained(𝑠, 𝑟, 𝐸𝑦) to edge-contained(𝑠, 𝑟, 𝐸𝑦′) using Theorem 4.4,
we give an efficient algorithm for computing 𝐸𝑦′ . Moreover, once we find a
(𝑟, 𝑠)-mincut in 𝐺𝑆′ that contains 𝐸𝑦′ we can efficiently compute a (𝑟, 𝑠)-
mincut in 𝐺 that contains all edges in 𝐸𝑦. Interestingly, we have algorithms
that run in time linear in the size of flesh for both these tasks, stated in the
following Lemma.

Lemma 4.5. Set of edges 𝐸𝑦′ in Theorem 4.4 can be obtained from 𝐸𝑦 given
flesh ℱ𝑆 and skeleton ℋ𝑆 in time linear in the size of flesh.

Lemma 4.6. Given a (𝑟, 𝑠)-mincut in 𝐺𝑆′ that contains the all edges in set
𝐸𝑦′ , we can construct a (𝑟, 𝑠)-mincut in 𝐺 that contains all edges in set 𝐸𝑦

in time linear in the size of flesh ℱ𝑆.

Proof. Consider the case when 𝑦 does not belong to any contracted vertex.
In this case, all edges in 𝐸𝑦 remain intact in 𝐺𝑆′ and thus 𝐸𝑦′ = 𝐸𝑦.
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Now, suppose 𝑦 belong to contracted vertex 𝑦′. Let 𝐴 be the set of
vertices compressed to contracted vertex 𝑦′. We select a vertex 𝑡 ∈ 𝐴∩𝑆 and
construct the 𝒟𝐴,𝑡 strip using the flesh ℱ𝑆 and skeleton ℋ𝑆 in time linear
in the size of flesh (using Lemma 2.12). Using the construction outlined in
Lemma 3.4 we can obtain the set of edges 𝐸𝐴 by computing reachability
cone(s) in strip 𝒟𝐴,𝑡. This takes time linear in size of 𝒟𝐴,𝑡. All edges in 𝐸𝐴

share same endpoint 𝑦′ in 𝐺𝑆′ . Thus, we get the set of edges 𝐸𝑦′ which is
simply all edges in 𝐺𝑆′ corresponding to set 𝐸𝐴. Clearly, this process can be
accomplished in time linear in the size of flesh ℱ𝑆.

Suppose we have a (𝑟, 𝑠)-mincut in 𝐺𝑆′ , say 𝐵 such that 𝑠, 𝑡 ̸∈ 𝐵 that
contains all edges in 𝐸𝑦′ . If 𝑦 does not belong to any contracted vertex, this
cut itself can be reported as 𝐸𝑦 = 𝐸𝑦′ . Suppose 𝑦 belong to contracted vertex
𝑦′. We can construct another (𝑟, 𝑠)-mincut 𝐵 ∪ 𝑅 (recall the definition of 𝑅
in Proof of Lemma 3.4). This procedure also involves construction of 𝒟𝐴,𝑡

strip and computation of reachability cone(s) in this strip. This process can
also be accomplished in time linear in the size of flesh ℱ𝑆.
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Chapter 5

Compact Data Structures for
Edge-Containment Queries

We describe first a hierarchical data structure of Katz, Katz, Korman and
Peleg [25] that was used for compact labeling scheme for all-pairs mincuts.
This hierarchical data structure is actually a rooted tree, denoted by 𝒯𝐺
henceforth. The key insight on which this tree is built is an equivalence
relation defined for a Steiner set 𝑆 ⊆ 𝑉 as follows.

Definition 5.1 (Relationℛ𝑆). Any two vertices 𝑎, 𝑏 ∈ 𝑆 are said to be related
by ℛ𝑆, that is (𝑎, 𝑏) ∈ ℛ𝑆, if 𝑐𝑎,𝑏 > 𝑐𝑆, where 𝑐𝑆 is the value of a Steiner
mincut of 𝑆.

By using ℛ𝑆 for various carefully chosen instances of 𝑆, we can build the
tree structure 𝒯𝐺 in a top-down manner as follows. Each node 𝜈 of the tree
will be associated with a Steiner set, denoted by 𝑆(𝜈), and the equivalence
relation ℛ𝑆(𝜈). To begin with, for the root node 𝑟, we associate 𝑆(𝑟) = 𝑉 .
Using ℛ𝑆(𝜈), we partition 𝑆(𝜈) into equivalence classes. For each equivalence
class, we create a unique child node of 𝜈; the Steiner set associated with this
child will be the corresponding equivalence class. We process the children of
𝜈 recursively along the same lines. We stop when the corresponding Steiner
set is a single vertex.

It follows from the construction described above that the tree 𝒯𝐺 will
have 𝑛 leaves - each corresponding to a vertex of 𝐺. The size of 𝒯𝐺 will be
𝑂(𝑛) since each internal node has at least 2 children. Notice that 𝑆(𝜈) is the
set of vertices present at the leaf nodes of the subtree of 𝒯𝐺 rooted at 𝜈. The
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following observation captures the relationship between a parent and child
node in 𝒯𝐺.

Observation 5.2. Suppose 𝜈 ∈ 𝒯𝐺 and 𝜇 is its parent. 𝑆(𝜈) comprises of
a maximal subset of vertices in 𝑆(𝜇) with connectivity strictly greater than
that of 𝑆(𝜇).

The following observation conveys an important property about the value
of (𝑠, 𝑡)-mincut for any two vertices 𝑠, 𝑡 ∈ 𝑉 .

Observation 5.3. Suppose 𝑠, 𝑡 ∈ 𝑉 are two vertices and 𝜇 is their LCA in
𝒯𝐺 then 𝑐𝑠,𝑡 = 𝑐𝑆(𝜇).

𝒯𝐺 can be augmented to design a data structure for edge-containment
query for any pair of vertices. For a single-edge-containment query, we get
the following result.

5.1 An 𝒪(𝑛2) data structure for single edge-
containment queries

Suppose 𝑆 is a designated Steiner set and 𝑠, 𝑡 ∈ 𝑆 are Steiner vertices sepa-
rated by some Steiner mincut. We can determine if an edge (𝑥, 𝑦) ∈ 𝐸 belongs
to some (𝑠, 𝑡)-mincut using the strip 𝒟𝑠,𝑡 that can be built from the connec-
tivity carcass. However, the construction of strip requires 𝒪(min(𝑚,𝑛𝑐𝑆))
time. Interestingly, we show that only the skeleton and the projection map-
ping of the connectivity carcass are sufficient for answering this query in
constant time. Moreover, the skeleton and the projection mapping occupy
only 𝒪(𝑛) space compared to the 𝒪(min(𝑚,𝑛𝑐𝑆)) space occupied by the
entire connectivity carcass.

Similar to the projection mapping of the stretched units, Dinitz and Vain-
shtein [15] introduced the notion of projection mapping for edges as follows.
Suppose (𝑥, 𝑦) ∈ 𝐸. If 𝑥 and 𝑦 belong to the same unit, then 𝑃 (𝑥, 𝑦) = ∅. If
𝑥 and 𝑦 belong to distinct terminal units mapped to nodes, say 𝜈1 and 𝜈2, in
the skeleton ℋ𝑆, then 𝑃 (𝑥, 𝑦) = 𝑃 (𝜈1, 𝜈2). If at least one of them belongs to
a stretched unit, 𝑃 (𝑥, 𝑦) is the extended path defined in Lemma 2.11. This
allows us to state the following lemma which follows from the construction
of a strip corresponding to a subbunch given in Section 2.3.
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Lemma 5.4 ([13]). Edge (𝑥, 𝑦) ∈ 𝐸 appears in the strip corresponding to
a subbunch if and only if one of the structural edge in the cut of ℋ𝑆 corre-
sponding to this subbunch lies in 𝑃 (𝑥, 𝑦).

We state the necessary and sufficient condition for an edge (𝑥, 𝑦) to lie in
an (𝑠, 𝑡)-mincut. Note that two paths are said to intersect in the skeleton if
the unique path of cycle and tree edges in both the paths intersect at some
cycle or tree edge.

Lemma 5.5. Edge (𝑥, 𝑦) ∈ 𝐸 belongs to a (𝑠, 𝑡)-mincut if and only if the
proper path 𝑃 (𝑥, 𝑦) intersects a path between the nodes containing 𝑠 and 𝑡
in in ℋ𝑆.

Proof. Observe that an edge (𝑥, 𝑦) lies in a (𝑠, 𝑡)-mincut if and only if it
appears in the strip 𝒟𝑠,𝑡 (follows from Lemma 2.7). Infact, we can extend
this notion for subbunch as well. The edge (𝑥, 𝑦) lies in some (𝑠, 𝑡)-mincut
if and only if it appears in the strip corresponding to some subbunch that
separates 𝑠 from 𝑡.

Consider each subbunch that separates 𝑠 from 𝑡. Let 𝜈1 and 𝜈2 be the
nodes in ℋ𝑆 containing 𝑠 and 𝑡 respectively. A cut in ℋ𝑆 corresponding to
any tree-edge (or pair of cycle edges in same cycle) in the path from 𝜈1 to
𝜈2 defines a subbunch separating 𝑠 from 𝑡. Moreover, it follows from the
structure of the skeleton that no other cut in the skeleton corresponds to a
subbunch separating 𝑠 from 𝑡.

Suppose (𝑥, 𝑦) lies in some (𝑠, 𝑡)-mincut. Thus, it must be in some sub-
bunch separating 𝑠 from 𝑡. From the above discussion, we know that this
subbunch must correspond to a cut in the path from 𝜈1 to 𝜈2 in skeleton
ℋ𝑆. Moreover, it follows from Lemma 5.4 that 𝑃 (𝑥, 𝑦) contains one of the
structural edge in this cut. This implies that 𝑃 (𝑥, 𝑦) intersects the path from
𝜈1 to 𝜈2 in skeleton ℋ𝑆.

Now, consider the other direction of this proof. Suppose 𝑃 (𝑥, 𝑦) and the
path from 𝜈1 to 𝜈2 intersect at some cycle (or tree edge) 𝑐. Let 𝑒1 and 𝑒2 be
structural edges belonging to the cycle 𝑐 that are part of 𝑃 (𝑥, 𝑦) and path
from 𝜈1 to 𝜈2 respectively (in the case of tree edge 𝑒1 = 𝑒2 = 𝑐). Consider
the cut in the skeleton corresponding to structural edges 𝑒1 and 𝑒2. It follows
from Lemma 5.4 that (𝑥, 𝑦) lies in the strip corresponding to this subbunch.
Since this cut separates 𝜈1 from 𝜈2 in ℋ𝑆, therefore the subbunch separates
𝑠 from 𝑡.
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We build our data structure using the findings of Lemma 5.5. We augment
each internal node 𝜇 of the hierarchy tree 𝒯𝐺 with the skeleton tree 𝑇 (ℋ𝑆(𝜇))
and the projection mapping 𝜋𝑆(𝜇) corresponding to Steiner set 𝑆(𝜇). Since
augmentation at each internal node takes 𝒪(𝑛) space, therefore the total
space occupied by the data structure is only 𝒪(𝑛2).

Determining whether a given edge belongs to a (𝑠, 𝑡)-mincut can be done
as follows. Let 𝜇 be the LCA of 𝑠 and 𝑡 in 𝒯𝐺. It follows from Observation
5.3 that 𝑐𝑠,𝑡 = 𝑐𝑆(𝜇). Thus, 𝑠 and 𝑡 must be separated by some Steiner mincut
for set 𝑆(𝜇). We check if paths 𝑃 (𝑥, 𝑦) and 𝑃 (𝜋𝑆(𝜇)(𝑠), 𝜋𝑆(𝜇)(𝑡)) intersect in
the skeleton ℋ𝑆(𝜇) (using Lemma 5.5). This can be done using 𝒪(1) LCA
queries on the skeleton tree 𝑇 (ℋ𝑆(𝜇)). Since it takes 𝒪(1) time for answering
one LCA query [3], so the query time will be 𝒪(1) only. Algorithm 1 presents
a concise pseudocode of the query answering algorithm.

Algorithm 1 Single edge-containment queries in 𝒪(𝑛2) data structure
1: procedure edge-cotained(𝑠, 𝑡, 𝑥, 𝑦)
2: 𝜇← LCA(𝒯𝐺, 𝑠, 𝑡)
3: 𝒫1 ← 𝑃 (𝜋𝑆(𝜇)(𝑠), 𝜋𝑆(𝜇)(𝑡))
4: 𝒫2 ← 𝑃 (𝑥, 𝑦)
5: if 𝒫1 ∩ 𝒫2 = ∅ then
6: return False
7: else
8: return True
9: end if

10: end procedure

We can thus state the following theorem.

Theorem 5.6. Given an undirected graph 𝐺 = (𝑉,𝐸) on 𝑛 = |𝑉 | vertices,
there exists a data structure of 𝒪(𝑛2) size that takes 𝒪(1) time to determine
whether an edge (𝑥, 𝑦) ∈ 𝐸 belongs to a (𝑠, 𝑡)-mincut for any 𝑠, 𝑡 ∈ 𝑉 and
(𝑥, 𝑦) ∈ 𝐸.

In the following section we present our 𝒪(𝑚) size data structure which is
more compact and can even handle multiple-edge-containment query.
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5.2 An 𝒪(𝑚) size data structure for edge-
containment queries

Consider any node 𝜇 in 𝒯𝐺. We associate a compact graph with node 𝜇, say
𝐺𝜇 = (𝑉𝜇, 𝐸𝜇) with the following properties.

1. 𝐺𝜇 is a quotient graph of 𝐺 with 𝑆(𝜇) ⊆ 𝑉𝜇

2. For each 𝑠, 𝑡 ∈ 𝑆(𝜇) and a set of edges 𝐸𝑦 incident on vertex 𝑦 ∈ 𝑉 ,
there exists a set of edges 𝐸𝑦′ incident on vertex 𝑦′ ∈ 𝑉𝜇 such that 𝐸𝑦

lies in a (𝑠, 𝑡)-mincut in 𝐺 if and only if 𝐸𝑦′ lies in a (𝑠, 𝑡)-mincut in
𝐺𝜇.

For the root node 𝑟, 𝐺𝑟 = 𝐺 and the two properties hold trivially. We
traverse 𝒯𝐺 in a top down fashion to construct 𝐺𝜇 for each node 𝜇 ∈ 𝒯𝐺 as
follows. Let 𝜇 be the parent of 𝜇′ in 𝒯𝐺. Assume we have graph 𝐺𝜇 already
built with the properties mentioned above. Thus, 𝑆(𝜇) ⊆ 𝑉𝜇. Using Obser-
vation 5.2 we know that 𝑆(𝜇′) is a maximal subset of 𝑆(𝜇) with connectivity
strictly greater than that of 𝑆(𝜇). Using Theorem 4.4 with 𝑆 = 𝑆(𝜇) and
𝑆 ′ = 𝑆(𝜇′), it can be shown that there exists a graph 𝐺𝑆(𝜇′) that satisfies
both the properties above. We define 𝐺𝜇′ to be 𝐺𝑆(𝜇′). The graph 𝐺𝜇′ itself
can be obtained using the 2-step contraction procedure described in Section
4.1.

Our compact data structure will be 𝒯𝐺 where each node 𝜇 will be aug-
mented with the connectivity carcass of 𝑆(𝜇) in graph 𝐺𝜇.

5.2.1 The query algorithm

A query edge-contained(𝑠, 𝑡, 𝐸𝑦) can be answered by the data structure
as follows. We start from the root node of 𝒯𝐺 and traverse the path to the
node 𝜈 which is the LCA of 𝑠 and 𝑡. Consider any edge (𝜇, 𝜇′) on this path,
where 𝜇 is parent of 𝜇′. We modify the query edge-contained(𝑠, 𝑡, 𝐸𝑦) in
𝐺𝜇 to an equivalent query edge-contained(𝑠, 𝑡, 𝐸𝑦′) in 𝐺𝜇′ as we move to
𝜇′ (see Theorem 4.4). This computation can be carried out in time linear
in size of flesh at node 𝜇 using Lemma 4.5. We stop when 𝜇 = 𝜈. Observe
that 𝑐𝑠,𝑡 = 𝑐𝑆(𝜈) (using Observation 5.3) and thus must be separated by some
Steiner mincut for 𝑆(𝜈). Thus we compute the strip𝒟𝑠,𝑡 at node 𝜈 and answer
the edge-containment query using Lemma 2.7. If the query evaluates to true,
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we compute a (𝑠, 𝑡)-mincut in 𝐺𝜈 using 𝒟𝑠,𝑡 that contains the required set of
edges at this level. We retrace the path from 𝜈 to the root of 𝒯𝐺. Consider
any edge (𝜇, 𝜇′) on this path where 𝜇 is parent of 𝜇′. We find a corresponding
(𝑠, 𝑡)-mincut in graph 𝐺𝜇 from the (𝑠, 𝑡)-mincut of 𝐺𝜇′ using Lemma 4.6. We
stop at the root node and report the set of vertices defining the (𝑠, 𝑡)-mincut
in 𝐺. We can thus state the following theorem.

Theorem 5.7. Given an undirected graph 𝐺 = (𝑉,𝐸) on 𝑛 = |𝑉 | vertices
and 𝑚 = |𝐸| edges, there exists a data structure of 𝒪(𝑚) size that can
determine whether any given subset of edges 𝐸𝑦 incident on vertex 𝑦 belongs
to a (𝑠, 𝑡)-mincut for any 𝑠, 𝑡, 𝑦 ∈ 𝑉 and report the same if exists. The time
taken to answer this query is 𝒪(min(𝑚,𝑛𝑐𝑠,𝑡)).

5.2.2 Size and Time analysis of compact data structure

The data structure doesn’t seem to be an 𝒪(𝑚) size data structure at first
sight. Observe that augmentation at any internal node can still take 𝒪(𝑚)
space individually. Interestingly, we show that collective space taken by
augmentation at each internal node will still be 𝒪(𝑚).

We begin with the following lemma which gives a tight bound on the sum
of weights of edges in Gomory-Hu tree is Θ(𝑚). We also give the proof for
the same which was suggested in [22, 15].

Lemma 5.8 ([22, 15]). The sum of weights of all edges in the Gomory-Hu
tree is Θ(𝑚).

Proof. Consider any edge (𝑢, 𝑣) ∈ 𝐸. This edge must be present in every
(𝑢, 𝑣)-mincut. Thus, the sum of weights of all edges in Gomory-Hu tree is
at least 𝑚. Now, root the Gomory-Hu tree at any arbitrary vertex 𝑟. Let
𝑓 maps each edge in this tree to its lower end-point. It is easy to observe
that 𝑓 is a one-to-one mapping. Let 𝑒 be an edge in the Gomory-Hu tree.
Observe that 𝑤(𝑒) ≤ 𝑑𝑒𝑔(𝑓(𝑒)) (where 𝑑𝑒𝑔() is the degree of vertex in 𝐺).
Thus the sum of weights of all edges in Gomory-Hu tree is at most 2𝑚. This
comes from the simple observation that the sum of the degree of all vertices
in 𝐺 equals 2𝑚.

Let us assign each edge (𝜇, 𝜇′) in the hierarchy tree 𝒯𝐺 weight equal to
the Steiner mincut value for the Steiner set 𝑆(𝜇) (if 𝜇 is the parent of 𝜇′).
We shall show that sum of the weight of edges in hierarchy tree 𝒯𝐺 is Θ(𝑚).
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To establish this bound refer to algorithm 2 that gives an algorithm to
construct the hierarchy tree from Gomory-Hu tree. Observe that the variable
𝑐𝑡𝑟 in this algorithm stores the sum of weights of all edges in 𝒯𝐺. It is clear
that for 𝑘 edges removed from the Gomory-Hu tree, we add 𝑘 + 1 edges of
equal weight in 𝒯𝐺. Thus, the sum of the weight of all edges in 𝒯𝐺 is at most
4𝑚 (since 𝑘 + 1 ≤ 2𝑘). Therefore, we state the following lemma.

Algorithm 2 Construct Hierarchy Tree 𝒯𝐺 from Gomory-Hu Tree 𝒯𝐺
1: 𝑐𝑡𝑟 ← 0
2: procedure Construct-Tree(𝒯𝐺)
3: if 𝒯𝐺 has single node then
4: Create a node 𝜇
5: 𝑣𝑎𝑙(𝜇)← 𝑣𝑎𝑙(𝒯𝐺)
6: return 𝜇
7: end if
8: 𝑐min ← min𝑒∈𝒯𝐺 𝑤(𝑒)
9: Let there be 𝑘 edges with weight 𝑐min

10: Remove all edges of weight 𝑐min in 𝒯𝐺 to get (𝑘 + 1) trees 𝑇1, .., 𝑇𝑘+1

11: Create a node 𝜇
12: 𝑐𝑡𝑟 ← 𝑐𝑡𝑟 + 𝑐min × (𝑘 + 1)
13: 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝜇)← {Construct-Tree(𝑇𝑖) | ∀𝑖 ∈ [𝑘 + 1]}
14: return 𝜇
15: end procedure

Lemma 5.9. The sum of weights of all edges in the tree 𝒯𝐺 is Θ(𝑚).

We shall now give a bound on the size of connectivity carcass augmented
at each internal node. The following lemma gives a bound on the size of flesh
graph ℱ𝑆 for any Steiner set 𝑆.

Lemma 5.10. Let 𝒱𝑆 and 𝒲𝑆 denote the set of Steiner and non-Steiner
units respectively in flesh graph ℱ𝑆 with Steiner set 𝑆 ⊆ 𝑉 . The size of ℱ𝑆

is bounded by |𝒱𝑆|𝑐𝑆 +
∑︀

𝑢∈𝒲𝑆
𝑑𝑒𝑔(𝑢).

Proof. Consider the Gomory-Hu tree of the flesh ℱ𝑆, say 𝒯 . It is evident
that the value of mincut between any two units is at most 𝑐𝑆. This follows
from the definition of a unit. Now, root this tree 𝒯 at some Steiner unit. Let
𝑓 maps each edge in this tree to its lower end-point. Any edge in this tree has
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weight at most 𝑐𝑆. However, for any non-Steiner unit 𝑢, 𝑤(𝑓−1(𝑢)) ≤ 𝑑𝑒𝑔(𝑢)
(where 𝑑𝑒𝑔() is the degree of vertex in 𝐺). Thus, the sum of weight of all
edges in 𝒯 is bounded by |𝒱𝑆|𝑐𝑆+

∑︀
𝑢∈𝒲𝑆

𝑑𝑒𝑔(𝑢). Using Lemma 5.8, it follows
that size of flesh ℱ𝑆 is bounded by |𝒱𝑆|𝑐𝑆 +

∑︀
𝑢∈𝒲𝑆

𝑑𝑒𝑔(𝑢).

Consider the flesh graph ℱ𝑆(𝜇) stored at some internal node 𝜇 in the
tree. Let 𝒱𝑆(𝜇) and 𝒲𝑆(𝜇) denote the set of Steiner and non-Steiner units
respectively in ℱ𝑆(𝜇). Let 𝑢 be some non-Steiner unit in ℱ𝑆(𝜇). It is evident
that 𝑢 consists of only contracted vertices (obtained after the contraction
procedure at some ancestral node). This non-Steiner unit gets compressed
to a new contracted vertex in all descendants, and in a sense, disappears.
Thus, each contracted vertex appears in at most one non-Steiner unit.

Now, we shall count the total number of contracted vertices introduced
at each internal node. We know that this count is an upper bound on the
total number of non-Steiner units across all flesh graphs. It follows from
Lemma 4.2 that the number of contracted vertices introduced by node 𝜇 to
the graph 𝐺𝜇′ associated with its child 𝜇′ is equal to the number of cycles
and tree edges incident on node corresponding to 𝜇′ in skeleton ℋ𝑆(𝜇). We
sum this number for each child of 𝜇. The total number of contracted vertices
introduced by internal node 𝜇 to all its children is at most twice the number
of tree and cycle edges. Since the skeleton is a cactus graph, thus the number
of tree and cycle edges is 𝒪(|𝒱𝑆(𝜇)|). Moreover, we know that the number of
Steiner units in ℱ𝑆(𝜇) also equals the number of children of node 𝜇 in tree
𝒯𝐺. Therefore, the number of Steiner units across all flesh graphs stored at
each internal node is given by

∑︀
𝜇∈𝒯𝐺|𝒱𝑆(𝜇)| which is 𝒪(𝑛). Thus, the total

number of non-Steiner units across all flesh graphs is also 𝒪(𝑛).
Now, we shall bound the sum of the degree of all non-Steiner units across

all flesh graphs. Since each contracted vertex appears in at most one non-
Steiner unit, we can sum the degree of all contracted vertices to get an
upper bound. It again follows from Lemma 4.2 that the degree of contracted
vertex introduced by node 𝜇 is exactly 𝑐𝑆(𝜇). Thus, the sum of degree of all
contracted vertices introduced by node 𝜇 is 𝒪(|𝒱𝑆(𝜇)|𝑐𝑆(𝜇)).

Combining the above observations, we can infer the following.

Inference 5.11. The total number of units across all flesh graphs is 𝒪(𝑛).

Inference 5.12. The sum of degree of non-Steiner units across all flesh
graphs stored at each internal node 𝜇 is 𝒪(

∑︀
𝜇∈𝒯𝐺 |𝒱𝑆(𝜇)|𝑐𝑆(𝜇)) i.e 𝒪(𝑚) (fol-

lows from Lemma 5.9). In other words,
∑︀

𝜇∈𝒯𝐺

∑︀
𝑢∈𝒲𝑆(𝜇)

𝑑𝑒𝑔(𝑢) is 𝒪(𝑚).
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Size analysis of Data Structure

Combining Lemma 5.8, Lemma 5.9, Lemma 5.10 and Inference 5.12 we get
the following result.∑︁

𝜇∈𝒯𝐺

|ℱ𝑆(𝜇)| ≤ 𝑐1 ×
∑︁
𝜇∈𝒯𝐺

(|𝒱𝑆(𝜇)|𝑐𝑆(𝜇) +
∑︁

𝑢∈𝒲𝑆(𝜇)

𝑑𝑒𝑔(𝑢))

≤ 𝑐2 ×𝑚

Time analysis of Data Structure

A trivial bound on the query time follows from the size analysis itself. Since
the combined size of our data structure is 𝒪(𝑚), it follows that the sum of
sizes of all flesh graphs from the root node to 𝐿𝐶𝐴(𝑠, 𝑡) will also be 𝒪(𝑚).
Dinitz and Vainshtein [13] showed that size of flesh graph ℱ𝑆 is 𝒪(�̃�𝑐𝑆) for
Steiner set 𝑆, where �̃� is the number of units in the flesh graph. Total number
of units across all flesh graphs is only 𝒪(𝑛) (Inference 5.11). The value of
Steiner mincut increases as we traverse from the root towards a leaf. Thus,
𝑐𝑠,𝑡 is the maximum Steiner mincut value in the path from root node to
𝐿𝐶𝐴(𝑠, 𝑡) . Thus, the sum of sizes of all flesh graphs in this path is bounded
by 𝒪(𝑛𝑐𝑠,𝑡). Thus, the query time we achieve is 𝒪(min(𝑚,𝑛𝑐𝑠,𝑡)).
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