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1 Introduction

The undirected s, t connectivity problem aims to check if there is path between a designated pair of
vertices s, t ∈ V in a given undirected graph G = (V,E). The corresponding language, known as
USTCON can be defined as follows,

USTCON={〈G, s, t〉|∃ a path between s, t ∈ V in undirected graph G}

It is simple to observe that USTCON ∈ P, because it can be realized by simply doing a BFS/DFS
from vertex s and checking if vertex t is ever encountered. However, this trivial algorithm takes
linear space. The question now is – what is the optimal space-bound we can achieve for this problem?

Previous Results There exists a simple NL algorithm for USTCON. We can start from vertex s,
initialize a counter to zero and non-deterministically move to a neighbor and increment the counter.
We continue this procedure until the counter reaches n or we encounter t. Clearly, if there is a path
between s and t, there must be at least one accepting path. Note that this algorithm also works for
STCON i.e. the directed variant of this problem.

A simple implication of Savitch’s theorem [9] is that USTCON ∈ SPACE(log2 n). A major
breakthrough [1] was achieved when USTCON was shown to be in RL. The algorithm crucially used
the fact that a random walk of a given polynomial length will reach t from s with a high probability.
Later, Saks and Zhou [8] showed that USTCON ∈ SPACE(log3/2 n) using derandomization techniques.
Further, Armoni, Ta-Shma, Wigderson and Zhou [3] just 2 years later showed that USTCON ∈
SPACE(log4/3 n). For long, it was believed that USTCON may have a complexity intermediate
between L and NL. In 2005, Omer Reingold [5] showed that USTCON ∈ L.

2 Motivation

The motivation underlying Reingold’s algorithm is quite intuitive. If one wishes to find the
connectivity of two vertices, first one should try to improve the “connectivity” of graph G. A
common technique of doing so is powering. The kth power of G, i.e. Gk contains an edge (u, v) for
every path of length k in graph G from u to v. Clearly, connectivity between two vertices does not
change upon powering the graph. However, the problem with powering the graph is that it leads
to an exponential blow up in the degree of the graph (if G is a D-regular graph, then Gk is a Dk-
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regular graph) and we want to avoid that in order to determine the connectivity in log-space. If we
are able to improve the connectivity of the graph such that the graph has a logarithmic diameter
and constant degree, then we can enumerate all paths starting from s of length ` = O(log n) by
storing ` edges and checking if any of these paths visits t. Also, since each edge would require
O(logD) bits, and D is held constant we’ll get a log-space algorithm for USTCON.

3 Algorithm

3.1 Notations

The notations we use is as follows. A graph G is an (N,D, λ)-graph if it has N vertices, degree
D and spectral expansion λ. Note that G in this case is a D-regular graph, i.e. all vertices have
degree D.

Definition 3.1. Suppose A is the adjacency matrix representation of the D-regular graph G and M
is the normalized adjacency matrix A

D . It is known that M has n real eigenvalues λ1 ≥ λ2 . . . ≥ λn
where λ1 = 1. Moreover, the spectral expansion is defined as λ = max{|λ2|, |λn|}.

Proposition 3.2 ([5]). If G is an (N,D, λ)-graph, then Gk is an (N,Dk, λk)-graph

It is well known that the second largest eigenvalue is a really good measure of expansion properties
of a graph. In particular, for every λ < 1, there exists ε > 0 such that for every (N,D, λ)-graph G
(called an expander) and a given set of vertices S such that |S| ≤ N

2 , atleast (1 + ε).|S| vertices of
G are connected by an edge to some vertex in S. This immediately implies that if λ < 1 and is a
constant, G has a diameter which is O(logN).

Using this fact, we infer that connectivity in a constant degree expander with λ < 1 and a
constant can be computed in log-space. A high-level description of the algorithm that does so for
G, s, t is as follows. Enumerate all paths D` where ` = O(logN) from s. Accept if t is present in
any of the paths. Enumerating all these paths requires O(logN. logD) space. We summarize the
result as follows.

Theorem 3.3. Connectivity in an (N,D, λ)-expander where D is a constant and λ < 1 is a constant
can be computed in O(logN) space.

We will now discuss an important property of any D-regular, connected, non-bipartite graph. We
later show how to transform an arbitrary connected graph to a D−regular non-bipartite connected
graph.

Lemma 3.4 ([2]). For every D-regular, connected, non-bipartite graph G on N vertices it holds
that λ(G) ≤ 1− 1

DN2 .

Thus, the aim now is to transform a given graph to a constant degree expander with diameter
O(logN). The tools used to accomplish this are powering and zig-zag products.

3.2 Zig-Zag Products

We shall briefly discuss the powerful concept of zig-zag product which is the elementary tool for
“reducing” the degree from blowing up due to powering.
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The construction of zig-zag product for an (N,D, λ)-graph G and (D, d, α)-graph H proceeds
as follows. Assume that V (H) = [D] = {1, 2, . . . , D}. Define a mapping, called rotation mapping,
RotG on V (G) × V (H) by RotG(u, i) = (v, j) where u is the jth neighbour of v and v is the ith

neighbour of u. The construction was given by Reingold, Vadhan and Wigderson [7].

Proposition 3.5 ([7]). The zig-zag product of G and H denoted by G z○H is a graph with the
following properties.

1. The vertex set of G z○H is V (G)× V (H). Hence the total number of vertices are ND.

2. There exists an edge between vertices (u, i) and (v, j), where (u, i), (v, j) ∈ V (G)× V (H) if
and only if ∃i′, j′ ∈ V (H) such that (i, i′), (j, j′) ∈ E(H) and RotG(u, i′) = (v, j′). A little
analysis shows that G z○H is d2-regular.

We shall now state the spectral property of zig-zag product which will be crucially used in
Reingold’s algorithm [6].

Lemma 3.6 (spectral property of zig-zag product [6]). Suppose G and H are (N,D, λ)-graph and
(D, d, α)-graph respectively, then G z○H is an (ND, d2, f(λ, α))-graph such that,

1− f(λ, α) ≥ 1
2(1− α2)(1− λ)

Observe that powering an (N,D, λ)-graph G yields a (N,D2, λ2)-graph G2. Intuitively, this
operation increases the degree of graph but improves the spectral expansion. Zig-zag product on
the other hand controls the degree of graph but worsens the spectral expansion. Interestingly, we
can get the best of both worlds by a careful combination of both the operations.

3.3 Transforming the Graph to Expander

In this section, we assume that G is connected. This may look strange, but we do so because
Reingold’s algorithm independently takes each connected component of the graph and checks if t
exists in the connected component that contains s.

Before diving into the transformation of graph to an expander, we show how to convert graph
G to a D16-regular graph. The conversion procedure is as follows. Suppose, G is the given graph.
Replace any vertex of degree d > 3 with a cycle on d vertices, and connect the edges incident on
this vertex to each of these d vertices present in the cycle. It is evident that after this procedure,
the number of vertices will only suffer a quadratic blowup and the degree of each of the vertex
will be ≤ 3. Finally, add self loops to each of the vertices until it becomes a D16-regular graph.
Interestingly, the construction ensures that the resultant graph is non-bipartite. Henceforth, we
assume that G is a D16-regular graph which is non-bipartite.

The reader might be tempted to know if there is something special in the number D16. The
reason of using this number becomes clear from the following fact.

Fact 3.7. There exists some constant D and a (D16, D, 12)-expander.

The existence of such an expander can be shown through probabilistic methods. However, a
constant D also implies that such an expander can be found by exhaustive search within constant
space bounds. Henceforth, we shall denote this expander by H.

With the above background, we are in a position to describe the Reingold’s algorithm. The
fundamental idea is to use zig-zag product and powering alternately to improve the spectral expansion
while keeping the degree in check. The key transformation is as follows.
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Proposition 3.8 (Key Transformation [6]). On input G and H, where G is a D16-regular graph on
[N ] and H is a D-regular graph on [D16], both given by their rotation maps, the transformation T
outputs the rotation map of a graph G defined as follows:

• Set ` = 2dlogDN2e

• Set G0 = G and for i > 0 define Gi recursively as (Gi−1 z○H)8

Denote by Ti(G,H) the graph Gi, and T (G,H) = G`. The transformation itself can be carried out
in log-space.

It is important to highlight that if we use rotation map representation of graphs, each powering
requires O(log deg(G)) additional space where G is the graph undergoing powering. A brief
description for the same can be found in Appendix A. Since, there are only ` rounds, additional
space used will only be O(`. logD) = O(logN) as the degree remains constant throughout.

From the properties of powering and zig-zag product it should be evident that after each step
Gi will have degree D16, which is the same as that of the input graph G. Thus, T (G,H) also
has the same degree as G. It follows from Lemma 3.5(1) that Gi is a graph on N ×D16i vertices.
Fortunately, since ` = O(logN) therefore G` has only O(poly(n)) number of vertices. This won’t
be a roadblock as we show that G` is an expander with λ(G`) ≤ 1

2 .

Lemma 3.9. G` is a constant degree expander with λ(G`) ≤ 1
2 .

Proof. Since G = G0 is a D−regular, connected and non-bipartite graph on N vertices, by lemma 3.4,
λ(G0) ≤ 1− 1/DN2. We claim that it is enough to show that ∀i > 0, λ(Gi) ≤ max {λ(Gi−1)

2, 1/2}
because then λ(G`) ≤ max {λ(G0)

2` , 1/2} and by our choice of ` = 2dlogDN2e, we can verify by

elementary calculations that (1 − 1/DN2)2
` ≤ 1/2. So let λ(Gi−1) = λ. Recall from Fact 3.7

that λ(H) = 1
2 . So, from Proposition 3.2 and Lemma 3.6, we have λ(Gi) = (λ(Gi−1 z○H))8 ≤

(1− 3
8(1− λ))8 < (1− 1

3(1− λ))8. If λ < 1/2, then λ(Gi) < (5/6)8 < 1/2. If λ ≥ 1/2, we can verify
by elementary calculations that (1− 1

3(1− λ))4 ≤ λ, which gives λ(Gi) < (1− 1
3(1− λ))8 ≤ λ2.

Using Theorem 3.3, the connectivity of vertices corresponding to s and t in G` can be computed
in log-space. Since the transformation outlined in Proposition 3.8 can also be accomplished in
log-space, we get a log-space algorithm for USTCON. Thus, USTCON ∈ L.

4 Conclusion and Future Work

Reingold showed that SL, the class of problems reducible to USTCON, also lies in L. However, the
following problems still remain open [6].

1. It remains open if any randomized log-space machine can be simulated with a deterministic
log-space machine i.e. whether RL=L.

2. A common conjecture is that Savitch’s algorithm [9] is optimal deterministic algorithm for
STCON, the counterpart of USTCON for directed graphs. While this conjecture may be true,
to the best of our knowledge there exists no evidence for the same.
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A Powering requires O(log deg(G)) additional space

Although Reingold gave a detailed proof for the same in his seminal work [6], we shall restrict
ourselves to a high-level description. Parts of this description are borrowed from lecture notes [4] of
Dwork and Harsha as part of a course offered in 2005 on expanders at Stanford.

If G is a D-regular graph, then G2 is a D2-regular graph. We can assume that the edge label
incident on each vertex are from set [D]× [D]. We compute RotG2(u, (i1, i2)) as follows. Suppose
(u, (i1, i2)) is already written on the tape, we first compute RotG(u, i1) = (w, j2) and replace the
content by (w, (j2, i2)). Observe that this step includes the additional space required to compute
RotG. Similarly, RotG(w, i2) = (v, j1) is computed and the contents are replaced by (v, (j2, j1)).
Finally, j1 and j2 are swapped to get (v, (j1, j2)) which is indeed the value of RotG2(u, (i1, i2)).
Suppose SPACE(G) denote the additional space to compute RotG, it follows that –

SPACE(G2) = SPACE(G) +O(log deg(G))
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Observe that if the powering is done ` = O(logN) time the space complexity achieved will be∑i=`
i=1O(log deg(G2i)) which results in O(log2N) space algorithm as the degree can grow quite large.

However, the Reingold’s algorithm keeps degree constant after each round resulting in the total
space complexity to be only

∑i=`
i=1O(logD) which is O(logD. logN) or simply log-space.
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