
ANALYZING TRACE SEQUENCES FOR ANDROID CRASHES

Authors

Abhyuday Pandey Ayush Kumar Umang Malik
Supervisor - Prof Subhajit Roy

Abstract

Android has now overtaken Windows to become the world’s most popular operating system,

according to data from Statcounter (2017). Since, Android is still a very young idea, many of its
aspects have not yet received wide attention. Trace obtained from Android crashes is also one
of them. Generally, these crash reports are taken over by the Application development team

and worked upon. We conduct a brief study on these traces and their behaviour.

Generating Crashes

The Monkey is a command-line tool that you can run on any emulator instance or on a device. It
sends a pseudo-random stream of user events into the system, which acts as a stress test on
the application software you are developing. [1]

Below is a snippet of monkey output :-

:Sending Touch (ACTION_DOWN): 0:(757.0,805.0)

:Sending Touch (ACTION_UP): 0:(716.1527,789.4009)

:Sending Touch (ACTION_DOWN): 0:(334.0,1585.0)

:Sending Touch (ACTION_UP): 0:(391.0497,1505.206)

:Sending Touch (ACTION_DOWN): 0:(948.0,584.0)

:Sending Touch (ACTION_UP): 0:(950.26117,581.4244)

:Sending Trackball (ACTION_MOVE): 0:(-4.0,3.0)

:Sending Touch (ACTION_DOWN): 0:(737.0,1277.0)

:Sending Touch (ACTION_UP): 0:(776.3995,1379.9172)

We limited the study to touch actions generated by Monkey to perform our investigations.

Replaying Crashes

Replay of crashes is a bit difficult task for Android as the results are also affected by flaky tests
[2] and stress [3]. Also, the simulation of sequence generated by monkey is not replayable
without taking some assumptions. We used MonkeyRunner [4] to replay our traces.
The MonkeyRunner tool provides an API for writing programs that control an Android device or
emulator from outside of Android code.
The assumptions taken were :

● If the distance between an ACTION_DOWN and ACTION_UP command is more than 10
units we classify it as a “drag event”.

● If the distance between an ACTION_DOWN and ACTION_UP command is less than 10
units we classify it as a “touch event”.

This assumption is kept in mind considering the dimensions of stylus/fingers which are used to
perform the actions.
We used monkeyrunner now to replay the crashes based on our formatting (source -
format_actions.py and trace_runner.py).

Tracking state of program

We simulate the entire trace as a graph G(V,E) where V is the state of the program and E
denote the transition from one state of program to another. So, we captured the status of
program after each action using uiautomator.
The uiautomatorviewer tool provides a convenient GUI to scan and analyze the UI components
currently displayed on an Android device. You can use this tool to inspect the layout hierarchy
and view the properties of UI components that are visible in the foreground of the device.
(source - getView.py and trace_runner.py).

Flaky Tests

A flaky test is one that sometimes passes and sometimes fails. Most flaky tests are
flaky because of how the test was written, and not due to an actual bug. [5]

Monkey provides an option to set a delay between the events. These can be done using the `
--throttle <milliseconds>` argument.

We summarize our observations in the following table :

Throttle Values Observation

Very low throttle value (<100 ms) Results in the crash almost instantly, especially on
Emulator/slow devices due to the high frequency of
events. Can be used for stress testing.

Throttle values in the range
100-500 ms

Result in flaky tests. When the same event sequence is
replayed on the device, the device may or may not crash.
It is not recognized if the crash was caused due to app or
the high frequency of events.

Throttle values above 500ms Works fine for all devices/emulators and also crashes
generated are due to bugs in the app only. These event
sequence can be replayed with stable outcome.

For the purpose of our project, we decided to use a threshold of 500ms. This tackles the
problem of flaky tests to some extent.

Study on reduction of trace sequences

This is an aspect which attracts industry relevance. The crash sequences in the crash reports
should be as compact as possible for efficient transfer and handling of them. The two
approaches we studied thoroughly are :

● Using Delta Debugging [6]
○ The paper proposes SimplyDroid, with three hierarchical delta debugging

algorithms, namely Hierarchical Delta Debugging (HDD), Balanced Hierarchical
Delta Debugging (BHDD) and Local Hierarchical Delta Debugging (LHDD).

○ Balanced HDD is proposes a method deal with real-world scenarios to balance
the heights of the tree.

○ Local HDD algorithm adopts the heuristic to preserve the transition from last
node of one level to first node of another level.

○ The states are tracked using both the event and the Activity ID (to represent the
GUI state of the device).

● Using Bayesian methods [7]
○ The algorithm is based upon Zeller’s delta debugging algorithm reformed to

tackle non-determinism in the application behaviour.
○ Remove “subtraces” and maintain a notional probability based upon Bayes

Theorem. That is selection of next sub trace will be according to the results when
different chunks of these subtraces were removed.

○ Since, the previous point is highly parallelizable, it is worth capitalising.
○ Transform the problem into a Markov Decision Problem to handle

non-determinism in the program.

Future Work

An obvious work package will be to inherit the ideas of previous sections and test them on
droix-bench, 24 most commonly used apps. The only bottleneck is getting crash sequences.
Since, our method relies on generating crash using a pseudo random sequence it becomes
virtually impossible to find a crash with this approach when throttle value is as high as 500 ms.
An approach that finds a crash avoiding flaky tests in limited time will definitely get a
breakthrough in this domain.

REFERENCES

1. https://developer.android.com/studio/test/monkey
2. https://developer.android.com/reference/android/test/FlakyTest
3. https://medium.com/default-to-open/stress-testing-android-apps-601311ebf590
4. https://developer.android.com/studio/test/monkeyrunner
5. https://openedx.atlassian.net/wiki/spaces/TE/pages/161427235/Flaky+Test+Process
6. SimplyDroid: Efficient event sequence simplification for android application by Bo Jiang,

Yuxuan Wu, Teng Li and W. K. Chan at ASE 2017.
7. Minimizing GUI Event Traces by Lazaro Clapp, Osbert Bastani, Saswat Anand and Alex

Aiken at FSE 2016.

https://developer.android.com/studio/test/monkey
https://developer.android.com/reference/android/test/FlakyTest
https://medium.com/default-to-open/stress-testing-android-apps-601311ebf590
https://developer.android.com/studio/test/monkeyrunner
https://openedx.atlassian.net/wiki/spaces/TE/pages/161427235/Flaky+Test+Process

